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ABSTRACT. The asymptotic behavior of x∆ = px is explored, with specific reference given to
how the graininess of the time scale affects stability. In addition we prove a Perron type theorem for
dynamic equations on time scales. The theorem gives sufficient conditions for exponential asymptotic
stability of a critical point of an almost linear dynamic equation. Application to the dynamic logistic
equation is given.
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1. INTRODUCTION

The fundamental solution of the most basic of differential equations

(1.1) x′ = px

is the exponential function, and even pre-calculus students know that it decays to zero

asymptotically if p < 0. On the other hand, the corresponding solution x(n) = (1+p)n

of the difference equation

(1.2) x(n+ 1)− x(n) = px(n)

decays to zero only if −2 < p < 0. The exponential decay rate of the former is

of course p, but it is log |1 + p| for p 6= −1 for the latter. This paper explores the

asymptotic behavior of the exponential function ep on a general unbounded time scale

T, an arbitrary unbounded from above closed subset of the set of real numbers R.

Equations (1.1) and (1.2) are special cases of the dynamic equation

(1.3) x∆ = px

on T whose fundamental solution is the time scale exponential function ep. The

time scale has a definite effect on which constants p yield decay to zero for ep or,

equivalently, asymptotic stability of (the zero solution of) equation (1.3). Pötzsche,

Siegmund and Wirth in [9] have given the following characterization of stability.
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Theorem 1.1. Let p ∈ C. The scalar system

x∆ = px, x ∈ C

is exponentially stable if and only if one of the following conditions is satisfied for

arbitrary t0 ∈ T

(i) γ(p) := lim sup
T→∞

1
T−t0

∫ T
t0

lim
s↘µ(t)

log |1+sp|
s

∆t < 0,

(ii) for all T ∈ T, there exists t ∈ T with t > T such that 1 + µ(t)p = 0,

where we use the convention log 0 = −∞ in (i).

Although they provide some simplification results for the calculation of γ(p), in

general it is still quite difficult to apply. Thus in this paper we give a simpler estimate

for the exponential rate of growth or decay of ep when p ∈ R, and a corresponding

condition for exponential asymptotic stability of equation (1.3) which does not depend

on γ(p). As a consequence we also give a 1-dimensional Perron theorem for almost

linear dynamic equations

(1.4) x∆ = px+ f(t, x).

This result gives conditions for local asymptotic stability of the zero critical point of

equation (1.4) in terms of the linear approximation (1.3) of the equation at the critical

point. The conditions explicitly include the graininess of the time scale. Finally, as

an example, we apply this result to the dynamic logistic equation.

We begin with a preliminary section whose main objective is to define the time

scales exponential function ep and identify it as the fundamental solution of the scalar

linear homogeneous dynamic equation (1.3). This section summarizes material in the

recent book by Bohner and Peterson [1] and we include it here for completeness.

2. PRELIMINARIES

A time scale T is an arbitrary nonempty closed subset of the reals R. For our

purposes, we assume throughout that T is unbounded above.

Definition 2.1. For t ∈ T we define the forward jump operator σ : T→ T by

σ(t) = inf{s ∈ T : s > t}.

A point t ∈ T is called right dense if σ(t) = t, and right scattered if σ(t) > t. It

is convenient to have a graininess operator µ : T→ [0,∞) defined by µ(t) = σ(t)− t.

Definition 2.2. Assume f : T→ R is a function and let t ∈ T. Then we define f∆(t)

to be the number (provided it exists) with the property that given any ε > 0, there

is a neighborhood U ⊂ T of t such that

|[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s| for all s ∈ U.
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We call f∆(t) the delta derivative of f at t.

In the case T = R, f∆(t) = f ′(t). When T = Z, f∆(t) is the standard forward

difference operator f(t+ 1)− f(t). One can also define integration on an appropriate

class of functions.

Definition 2.3. Let f : T→ R be a function, and a, b ∈ T. If there exists a function

F : T→ R such that F∆(t) = f(t) for all t ∈ T, then F is said to be an antiderivative

of f . In this case the integral is given by the formula∫ b

a

f(τ)∆τ = F (b)− F (a) for a, b ∈ T.

Theorem 2.4 (Chain Rule). Let f : R → R be continuously differentiable and sup-

pose g : T→ R is delta differentiable. Then f ◦ g : T→ R is delta differentiable and

the formula

(f ◦ g)∆(t) = g∆(t)

∫ 1

0

f ′(g(t) + hµ(t)g∆(t)) dh

holds.

Definition 2.5. A function f : T→ R is called right dense continuous provided it is

continuous at all right dense points of T and its left sided limit exists (finite) at left

dense points of T. The set of all right dense continuous functions on T is denoted by

Crd = Crd(T) = Crd(T,R).

Remark 2.6. All right dense continuous functions are integrable.

Theorem 2.7. Let f ∈ Crd with a, b ∈ T. If f(t) ≥ 0 for all a ≤ t < b, then∫ b

a

f(t) ∆t ≥ 0.

Definition 2.8. We say that a function f : T→ R is regressive provided

1 + µ(t)f(t) 6= 0

for all t ∈ T. The set of all regressive and right dense continuous functions will be

denoted by R = R(T) = R(T,R).

Definition 2.9. We define the set R+ of all positively regressive elements of R by

R+ = R+(T,R) = {f ∈ R : 1 + µ(t)f(t) > 0 for all t ∈ T}.

We next give the definition of the exponential function on a time scale. Then we

list some useful properties of this exponential function.

Definition 2.10. For h > 0 we define the function

ξh(x) =
1

h
Log(1 + xh),
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for any real number x except − 1
h
, where Log is the principal logarithm function, i.e.,

ξh(x) =
1

h

{
log(1 + xh) for x > − 1

h

log |1 + xh|+ iπ for x < − 1
h

.

For h = 0, we define ξ0(x) = x.

Definition 2.11. If f : T → R is regressive and right dense continuous, then we

define the exponential function by

ef (t, s) = exp

(∫ t

s

ξµ(τ)(f(τ))∆τ

)
for t ∈ T, s ∈ T.

Remark 2.12. Consider the dynamic initial value problem

x∆ = p(t)x, x(t0) = x0

where t0 ∈ T and p ∈ R is right dense continuous. Then the exponential function

x0ep(t, t0) is the unique solution to this initial value problem.

Theorem 2.13. If p, q ∈ R, then

1. e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

2. ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

3. ep(t, s)ep(s, r) = ep(t, r);

4. ep(t, s) = e	p(s, t) where 	p = − p
1+pµ

.

In Bohner and Peterson [1], the variation of parameters formula is proved for the

dynamic equation

x∆ = p(t)x+ f(t), x(t0) = x0.

Similar to that, one may prove the following result.

Theorem 2.14 (Variation of Parameters). Suppose p ∈ R, and assume f(t, x) is a

real-valued continuous function for (t, x) ∈ T × R. Let t0 ∈ T and x0 ∈ R. If the

initial value problem

x∆ = p(t)x+ f(t, x), x(t0) = x0.

has a unique solution x(t) defined for all t in the T-interval I which contains t0 in its

interior, then x(t) is given by

x(t) = ep(t, t0)x0 +

∫ t

t0

ep(t, σ(τ))f(τ, x(τ)) ∆τ

for all t ∈ I.
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Theorem 2.15. Let x, f ∈ Crd and p ∈ R+. Then

x∆(t) ≤ p(t)x(t) + f(t) for all t ∈ T

implies

x(t) ≤ x(t0)ep(t, t0) +

∫ t

t0

ep(t, σ(τ))f(τ) ∆τ for all t ∈ T.

Theorem 2.16 (Gronwall Inequality). Let x, f ∈ Crd and p ∈ R+, p ≥ 0. Then

x(t) ≤ f(t) +

∫ t

t0

x(τ)p(τ) ∆τ for all t ∈ T

implies

x(t) ≤ f(t) +

∫ t

t0

ep(t, σ(τ))f(τ)p(τ) ∆τ for all t ∈ T.

It is clear from the proofs of the last two results in Bohner and Peterson [1] that

in each case, reversing the inequalities in the assumptions yields corresponding lower

(instead of upper) estimates for the solution.

3. ESTIMATES FOR THE TIME SCALE EXPONENTIAL

In this section we give a simple estimate for the time scales exponential function

ep(t, t0) for any nonzero regressive real constant p in terms of a corresponding real

continuous exponential function eα(t−t0). Toward this end, we define, for any such p,

the (possibly extended) real-valued function

(3.1) α = αp(µ) :=
log |1 + pµ|

µ
for µ > 0

and set αp(0) = p. For the two standard examples, the continuous case, µ = 0, and

the discrete case, µ = 1, we have

ep(t, t0) = ep(t−t0) = eαp(0)(t−t0),

and

|ep(t, t0)| = |1 + p|(t−t0) = e(t−t0) log |1+p| = eαp(1)(t−t0)

respectively. These examples suggest that the function αp is the (logarithmic) growth

rate of the dynamic exponential function ep.

Hilger’s explicit representation [5] for the modulus of ep(t, t0)

|ep(t, t0)| = exp

(∫ t

t0

lim
s↘µ(τ)

log |1 + sp|
s

∆τ

)
= exp

(∫ t

t0

lim
s↘µ(τ)

αp(s) ∆τ

)
(3.2)
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gives the relationship between αp and ep for a general time scale T. Indeed, in

the regressive case, continuity of the function αp for µ 6= −1/p gives the further

simplification of (3.2),

(3.3) |ep(t, t0)| = exp

∫ t

t0

αp(µ(τ)) ∆τ.

So what is required is an estimation of the time scales integral∫ t

t0

αp(µ(τ)) ∆τ.

Theorem 1.1 makes use of the time scales mean

1

u− t0

∫ u

t0

αp(µ(τ)) ∆τ

of the function αp(µ(τ)), whereas our comparable result in the next section makes us

of the estimate below which instead involves directly bounds on αp as a function of

the graininess µ on the time scale. The former gives a sharper result, but it appears

that our result may be easier to apply.

First we document the behavior of α as a function of the graininess µ. For p

positive, α is a decreasing continuous function on [0,∞) with

lim
µ→∞

α(µ) = 0.

In particular for p ≥ 0,

q = sup{α(µ)} = p.

For p negative, α decreases from p to −∞ on the interval [0,−1/p) and increases from

−∞ to 0 on (−1/p,−2/p]. For µ > −2/p, α(µ) > 0 first increases to its maximum

value at µ = µ∗ ≈ −4.59/p, and then decreases to 0 as µ→∞. Indeed, if p < 0 and

µ > −2/p, then

|1 + pµ| = −(1 + pµ) > 1 and α′p(µ) =

pµ
1+pµ

− log(−(1 + pµ))

µ2
.

The numerator, considered as a function of ν = −(1 + pµ),

n(ν) =
ν + 1

ν
− log ν, ν > 1

is decreasing with a unique zero at approximately ν = 3.59.

We are interested in the function αp restricted to the subset of µ’s that occur

in the time scale T. It is clear from the discussion above that if S is any subset of

[0,∞),

qS = sup{α(µ) : µ ∈ S} <∞.

Note that in case p < 0 and S = {−1/p}, qS = −∞. In all other cases, qS is finite.

In addition let

rS = inf{α(µ) : µ ∈ S}.
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Our estimation result then is the following.

Theorem 3.1. Let p ∈ R and t0, t ∈ T. Define T0 = T ∩ [t0,∞),

T0 = µ(T0) = {µ : µ = µ(t) : t ∈ T0}

and

r0 = rT0 , q0 = qT0 .

Then

er0(t−t0) ≤ |ep(t, t0)| ≤ eq0(t−t0),

for all t ∈ T0.

Proof. We have, by linearity and the estimation property for time scales integrals

(Theorem 2.7) and from the fact that t is a time scales antiderivative of 1,

(3.4)

∫ t

t0

αp(µ(τ)) ∆τ ≥
∫ t

t0

r0 ∆τ = r0(t− t0),

and

(3.5)

∫ t

t0

αp(µ(τ)) ∆τ ≤
∫ t

t0

q04τ = q0(t− t0).

Substituting (3.4) and (3.5) into (3.3) gives the result.

4. ASYMPTOTIC BEHAVIOR OF DYNAMIC NATURAL GROWTH

We will now consider the dynamic natural growth model

(4.1) x∆ = px

where p ∈ R is a nonzero constant. As mentioned in the Section 2, for any t0 ∈ T,

the time scales exponential function ep(., t0) determines the fundamental solution of

equation (4.1). Corresponding to any initial value

(4.2) x(t0) = x0,

the unique solution of the dynamic initial value problem (4.1), (4.2) is given by

x = x(t) = x0ep(t, t0)

which is exactly analogous to the continuous T = R case. In particular for x0 = 0,

we obtain the constant zero solution of equation (4.1). We obtain the following

asymptotic behavior result directly from Theorem 3.1.

Corollary 4.1. Let

rT = lim inf
t→∞

αp(µ(t)) and qT = lim sup
t→∞

αp(µ(t)),

and suppose p ∈ R. If rT > 0, then every solution x(t) of equation (4.1) satisfies

(4.3) lim
t→∞
|x(t)| =∞.
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If qT < 0, then every solution x(t) of equation (4.1) satisfies

(4.4) lim
t→∞

x(t) = 0.

Proof. We verify (4.4), with (4.3) following similarly. We exhibit a positive constant

K and a negative constant q such that the solution x(t) of the initial value problem

(4.1), (4.2), satisfies

(4.5) |x(t)| ≤ |x0|Keq(t−t0)

for all t > t0. Toward determining K and q, first pick t1 ∈ T, t1 ≥ t0, so that qT1 < 0

where

T1 = µ(T ∩ [t1,∞)).

This is possible since qT < 0. Take q = qT1 . Direct application of Theorem 3.1 now

gives

|ep(t, t1)| ≤ eq(t−t1)

for all t > t1. Now we take

K = max
t0≤t≤t1

|ep(t, t0)|e−q(t1−t0).

Then we have, first of all, for t0 ≤ t ≤ t1,

|x(t)| = |x0||ep(t, t0)| ≤ |x0|Keq(t1−t0) ≤ |x0|Keq(t−t0).

For t > t1, we have

|x(t)| = |x0||ep(t, t0)|

= |x0||ep(t, t1)||ep(t1, t0)|

≤ |x0||ep(t, t1)|Keq(t1−t0)

≤ |x0|eq(t−t1)Keq(t−t0) = |x0|Keq(t−t0).

Finally, note that if qT < 0 holds, we obtain (4.5) with q = qT and K = 1.

This implies that if the maximal growth rate is negative, the exponential func-

tion decays to zero. The continuity of the function α(µ) allows equivalent stability

statements to be formulated explicitly in terms of the asymptotic graininess of the

time scale. Continuity of αp permits the following version of Corollary 4.1 in terms

of the graininess of the time scale.

Corollary 4.2. Let

µ = lim sup
t→∞

µ(t) and µ = lim inf
t→∞

µ(t),

and suppose p ∈ R. Then (4.3) holds if either

(4.6) p > 0
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or

(4.7) p < 0 and µ > −2

p
.

If

(4.8) µ < −2

p
,

then (4.4) holds.

Example 4.3. For the time scale R,

µ = µ = µ = 0 and rT = qT = αp(0) = p.

We see that (4.7) cannot hold, and (4.8) holds if and only if p < 0. Here

ep(t, t0) = ep(t−t0)

and Corollary 4.2 reduces to exactly the corresponding well-known result for the usual

real exponential function.

Example 4.4. We consider completely scattered discrete time scales T = {tj : j ∈
N}, tj+1 > tj, for each j, and tj →∞ as j →∞. In this case

ep(t, t0) = exp

(∫ t

t0

ξµ(τ)(p)∆τ

)
= exp

(∫ t

t0

1

µ(τ)
Log(1 + µ(τ)p)∆τ

)

= exp

∑
t0≤τ<t
τ∈T

Log(1 + µ(τ)p)

 .

but the asymptotic behavior is not immediately apparent. We look at three special

cases. In the difference equation case, T = Z, we have

µ = µ = µ = 1 and rT = qT = αp(1) = log |1 + p|.

Conditions (4.6), (4.7) hold in this case if and only if either p > 0 or p < −2, and

Corollary 4.2 confirms that the exponential ep(t, t0) explodes as t → ∞; (4.8) is

equivalent to |1 + p| < 1, and the corollary gives that the exponential asymptotically

decays to zero in this case.

If T = {qn : n ∈ N} where q > 1, then µ =∞. The corollary gives explosion for

any (nonzero) value of p, as it is easily seen that either (4.6) or (4.7) always holds in

this case.

Now we consider a special case of the time scale in [9, Example 5]. Let

s0 = 0, sk+1 = sk + 3k+1 + 1, k ∈ N0
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and take

T = {0, 3, 4, . . . , sk, sk + 3, . . . , sk + 3k+1, sk+1, . . . }

= {0, 3, 4, 7, 10, 13, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 42, 45, 48, . . . }.

Here we have µ = 1 and µ = 3. The condition for explosion is the same as in the

simple difference equation case, but the corollary only asserts that the exponential

will asymptotically decay to zero if

−2

3
< p < 0.

Example 4.5. We consider a time scale which is a disjoint union of closed intervals

T =
∞⋃
j=1

[sj, tj]

with sj < tj < sj+1 and sj →∞ as j →∞. In this case the time scales exponential

ep(t, t0) is a product of real exponentials corresponding to the intervals in T between

t and t0 and factors of the form 1 + p(sj+1 − tj) corresponding to the gaps (tj, sj+1)

in T between t and t0. It is clear that µ = 0, and

µ = lim sup
t→∞

(sj+1 − tj).

So Corollary 4.2 predicts explosion if p > 0 and asymptotic decay to zero if

− 2

µ
< p < 0.

Example 4.6. A time scale composed of the union of a sequence of identical Cantor

sets C tending to infinity

T =
∞⋃
n=1

{t = n+ c, c ∈ C}

causes no problem in applying the corollary. Density of the set implies µ = 0 while

the size of the largest gap gives that µ = 1/3. So once again Corollary 4.2 predicts

explosion of the time scales exponential if p > 0, with asymptotic decay to zero

following if −6 < p < 0.

5. ASYMPTOTIC STABILITY OF ALMOST

LINEAR DYNAMIC EQUATIONS

The estimates on the dynamic exponential function given in the last section allow

us to give a straightforward proof of the Lyapunov stability result for almost linear

dynamic equations in the scalar case. Dynamic equations are referred to as almost

linear if they can be written in the form

(5.1) x∆ = px+ f(t, x)
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with

(5.2) lim
x→0

|f(t, x)|
|x|

= 0

uniformly for t ∈ T. We assume also throughout this section that f is continuous and

at least in a neighborhood of x = 0, solutions of initial value problems (5.1),

(5.3) x(t0) = x0

exist for all t > t0 and are unique.

The stability and instability results given in this section are dynamic equations

versions of the original classical results established by A. M. Lyapunov for ordinary

differential equations. The proofs given here are along the lines of the ones given in

Coddington and Levinson [2], which are there attributed to Perron [8]. The stability

result can be extended readily to the n-dimensional case by invoking a result in [2],

but a complete treatment of the corresponding instability result requires more detail,

and so for now for clarity we just consider the scalar case. The results themselves

here are not new, but are rather contained in the more general Hartman–Grobman

result for measure chains given by Hilger [6].

We start by recalling the definitions of Lyapunov stability and asymptotic stabil-

ity of a particular solution of a dynamic equation. These definitions are exactly the

same as for differential equations and difference equations.

Definition 5.1. The zero solution of (5.1) is stable if for any t0 ∈ T and δ > 0,

there exists an ε = ε(t0, δ) > 0 such that if x(t) is a solution of equation (5.1) with

|x(t0)| < δ, then |x(t)| < ε for all t ∈ T, t ≥ t0. If the zero solution is not stable, it is

said to be unstable. If the zero solution of equation (5.1) is stable, and if also there

exists a δ0 > 0 such that any solution of equation (5.1) with |x(t0)| < δ0 satisfies

lim
t→∞

x(t) = 0,

then the zero solution is called asymptotically stable. In the latter case, the zero

solution is called exponentially asymptotically stable if there exists constants δ1, q,

and K such that for any solution x(t) of equation (5.1) with |x(t0)| < δ1,

|x(t)| ≤ Ke−q(t−t0)

for all t ∈ T, t ≥ t0. If K can be chosen independent of t0, then the zero solution is

said to be uniformly exponentially asymptotically stable.

Remark 5.2. The condition that p is regressive is necessary for the exponential

function on time scales to be defined, but is unnecessary for the zero solution to be

exponentially asymptotically stable. Suppose p is nonregressive, i.e., 1 + pµ(t1) = 0
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for some t1 ∈ T. Then t1 must be right scattered, and using the fact that ep satisfies

x∆ = px, we have

x∆(t1) =
x(σ(t1))− x(t1)

µ(t1)
.

Thus

x(σ(t1))− x(t1)

µ(t1)
= px(t1), hence x(σ(t1)) = (1 + pµ(t1))x(t1) = 0,

and solutions reach zero in finite time.

Theorem 5.3. Let T be a time scale which is unbounded above, and let N be a

neighborhood of x = 0. Assume f(t, x) is a real-valued continuous function for (t, x) ∈
T ×N which satisfies the condition (5.2) uniformly in t on T. If p ∈ R and qT < 0

holds on T, then the zero solution of the almost linear dynamic equation (5.1) is

exponentially asymptotically stable. Furthermore, if qT < 0, the zero solution of

equation (5.1) is uniformly exponentially asymptotically stable.

Proof. Let x(t) = x(t; t0, x0) denote the solution of the dynamic initial value problem

(5.1), (5.3). By Theorem 2.14,

x(t) = ep(t, t0)x0 +

∫ t

t0

ep(t, σ(τ))f(τ, x(τ)) ∆τ,

or

e	p(t, t0)x(t) = x0 +

∫ t

t0

e	p(t, t0)ep(t, σ(τ))f(τ, x(τ)) ∆τ

= x0 +

∫ t

t0

e	p(t, t0)e	p(σ(τ), t)f(τ, x(τ)) ∆τ

= x0 +

∫ t

t0

e	p(σ(τ), t0)f(τ, x(τ)) ∆τ.

Thus, from (5.2), given ε > 0, there is a δ > 0 such that if |x0| < δ,

|e	p(t, t0)x(t)| ≤ |x0|+
∫ t

t0

|e	p(σ(τ), t0)||f(τ, x(τ))|∆τ

≤ |x0|+ ε

∫ t

t0

|e	p(σ(τ), t0)||x(τ)|∆τ

= |x0|+ ε

∫ t

t0

|e	p(σ(τ), t0)x(τ)|∆τ

provided

(5.4) |x(τ)| < δ

for all τ ∈ T ∩ [t0, t). Note that ε > 0 implies ε ∈ R+. So by Theorem 2.16, we have

(5.5) |e	p(t, t0)x(t)| ≤ |x0|eε(t, t0) ≤ |x0||eε(t, t0)|
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if (5.4) holds. Now, since ε > 0,

|eε(t, t0)| ≤ eε(t−t0)

from Theorem 3.1 and the preceding discussion of the properties of the function α.

Thus, from (5.5) and Corollary 4.1, we have, again under condition (5.4),

(5.6) |x(t)| ≤ |x0||ep(t, t0)|eε(t−t0) ≤ |x0|Keq(t−t0)eε(t−t0) = K|x0|e(q+ε)(t−t0)

for a positive constants K and q < 0. We choose ε < −q. So the proof will be

complete if it is shown that there is a δ1 > 0 such that if

|x0| < δ1

then condition (5.6) holds for all τ ∈ T ∩ [t0,∞). Now by continuity of the solution

x(t),

|x(t)| < δ

for all t in some interval [t0, t1) if |x0| = |x(t0)| < δ. If K > 1, we now make the

choice

(5.7) |x0| < δ/K.

So by continuity again, (5.6) holds on at least the interval [t0, t1]. Let t1 be the largest

such point in T, i.e., let

t1 = sup{t > t0 : |x(t)| < δ}.

If t1 <∞, |x(t1)| = δ. But, by (5.6) and (5.7),

δ = |x(t1)| ≤ K|x0|e(q+ε)(t1−t0) < K|x0| < K(δ/K) = δ.

This contradiction means that (5.6) holds for all t > t0, t ∈ T, and K|x0| < δ. The

choice of ε shows that the above exponential rate is negative. Hence the zero solution

is exponentially asymptotically stable. As in Corollary 4.1, if qT < 0 holds we obtain

(5.6) with q = qT and K = 1: the zero solution is uniformly exponentially stable.

Example 5.4. The regressivity of p is necessary in Theorem 5.3. Let {bk} be a

sequence of positive integers such that
∞∑
k=0

bk
3k

=∞

and define the recursive sequence sk by

s0 = 0, sk+1 = sk + 3bk + 1 for k ∈ N.

Consider

(5.8) x∆ = −x− x3

on the time scale T = {. . . , sk, sk + 3, sk + 3bk, sk+1, . . . }. Note that p = −1 is

not a regressive constant on T. Pötzsche, Siegmund and Wirth in [9] have shown
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that equation (5.8) is unstable on this time scale even though the linearized system

x∆ = −x is exponentially stable since trajectories reach zero in finite time. For this

time scale, µ = 3. Thus if −2/3 < p < 0 then the zero solution of

x∆ = px− x3

is uniformly exponentially stable.

Theorem 5.5. Assume f(t, x) is a real-valued continuous function for (t, x) ∈ T×N
which satisfies condition (5.2) uniformly in t on T. If p > 0, then the zero solution

of the almost linear dynamic equation (5.1) is unstable.

Proof. By way of contradiction assume that equation (5.1) is stable. By the almost

linearity property (5.2) of f , given ε > 0, there is an η > 0 such that |f(t, x)| ≤ ε|x|,
uniformly in t, if |x| ≤ η. The assumed stability of the zero solution of (5.1) implies

that, for this value η, there is a δ > 0 such that if x(t) is a solution of (5.1), (5.3)

with |x0| ≤ δ, then |x(t)| ≤ η, for all t ≥ t0. Consider x2(t). Then by Theorem 2.4,

we have (
x2(t)

)∆
= 2x∆(t)

∫ 1

0

[
x(t) + hµ(t)x∆(t)

]
dh

= µ(t)
(
x∆(t)

)2
+ 2x(t)x∆(t)

= µ(t)
(
x∆(t)

)2
+ 2x(t) [px(t) + f(t, x)]

≥ 2px2(t) + 2x(t)f(t, x)

≥ 2px2(t)− 2εx2(t)

= (2p− 2ε)x2(t).

Since p > 0, one may choose ε sufficiently small so that 2p−2ε > 0. Then by Corollary

4.2, lim
t→∞
|x2(t)| =∞, contradicting the assumption of stability.

Theorem 5.6. Suppose there exists positive constant λ and ν such that

(5.9) −∞ < −λ < 1 + µ(t)p < ν < −1

for all t ∈ T, and let f(t, x) satisfy condition (5.2). Then the zero solution of the

dynamic equation (5.1) is unstable.

Proof. If the zero solution were stable, by (5.2) for any ε > 0 there would be a δ > 0

such that if |x(t0)| < δ, then both

(5.10) |f(t, x(t))| < ε|x(t)|

and x(t) remains bounded for all t ∈ T with t ≥ t0. Note that under hypothesis

(5.9), all points in T are scattered, and consequently equation (5.1) can be written in

update difference equation form:

(5.11) x(σ(t)) = (1 + µ(t)p)x(t) + µ(t)f(t, x(t)).
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So we have

|x(σ(t))| ≥ ||(1 + µ(t)p)||x(t)| − µ(t)|f(t, x(t))||

≥ ν|x(t)| − µ(t)ε|x(t)|(5.12)

Now condition (5.9) also implies that the graininess µ is bounded:

µ(t) <
−1− λ

p
= β.

Therefore (5.12) yields the estimate

(5.13) |x(σ(t))| ≥ (ν − βε)|x(t)|

for all t ≥ t0. Since ν > 1, we can now choose ε sufficiently small so that

ν − βε > 1.

If |x(t0)| < δ, a value which corresponds to the above choice of ε according to (5.10),

then, for any positive integer n, we have from (5.13)

|x(t)| ≥ (ν − βε)n|x(t0)|

eventually for some t > t0. This contradicts stability of the zero solution.

We now have the following corollaries that are analogous to Corollary 4.2.

Corollary 5.7. Let f and p be as in Theorem 5.3. If

µ < −2

p

then the zero solution of the almost linear dynamic equation (5.1) is exponentially

asymptotically stable. Furthermore, if

supµ(t) < −2

p

the zero solution of equation (5.1) is uniformly exponentially asymptotically stable.

Corollary 5.8. Let f and p be as in Theorem 5.3 with p < 0. If

(5.14) µ > −2

p

then the zero solution of equation (5.1) is unstable.

Proof. Note, first of all, that condition (5.9) holding for all t ∈ T and t sufficiently

large suffices for the conclusion of Theorem 5.6 to hold. Now, by (5.14), for such t,

µ(t) > −2

p
+

(
µ+ 2

p

)
2

=
µ

2
− 1

p
.

Therefore, since p < 0,

(5.15) 1 + pµ(t) <
pµ

2



146 T. GARD AND J. HOFFACKER

for t ∈ T and t sufficiently large. Inequality (5.14) implies that

(5.16) −ν =
pµ

2
< −1.

So combining inequalities (5.15) and (5.16) gives (5.9) and the result follows from

Theorem 5.6.

Example 5.9. We consider the dynamic logistic equation

(5.17) x∆ = px(1− x).

where p > 0. The differential (µ ≡ 0) and difference (µ ≡ 1) cases are basic popu-

lation models which feature density-dependent limitations on growth (see e.g., [4]).

The differential equations case, also known as the Verhulst–Pearl growth model, is

of course familiar to all differential equations students. The dynamic asymptotic be-

havior is robust and simple – for all positive constants p, the positive solutions of

equation (5.17) are monotonic and tend toward the equilibrium x1 = 1, and the other

equilibrium x0 = 0 is unstable. The difference case is a well-known example of a sim-

ple equation which can exhibit complex dynamics, as shown by the parameter regime

2 < p ≤ 3 – oscillations and chaotic dynamics characterized by interval attractors

occur, a situation first observed by Robert May [7].

For all time scales, the equilibria of equation (5.17) are x0 = 0 and x1 = 1.

Considering the equilibrium x0 = 0, we note that equation (5.17) is in almost linear

form

x4 = px(1− x) = px− px2,

and that the conditions of Theorem 5.5 are satisfied. In particular, since p > 0, the

regressive assumption and the condition for instability of the zero solution hold on

any time scale. Thus Theorem 5.5 indicates that this equilibrium solution is unstable

on any time scale. Letting

z = 1− x,

equation (5.17) transforms to

(5.18) z∆ = −p(1− z)z = −pz + pz2

and we are interested in the equilibrium solution z0 = 1− x1 = 0. It is clear that the

conditions of Theorem 5.3 are satisfied. The regressive assumption requires that

µ(t) 6= 1

p

for any t in the time scale. Then Theorem 5.3 indicates that the zero solution of

equation (5.18) (the x1 = 1 solution of equation (5.17)) is exponentially stable if

(5.19) qT = lim sup
t→∞

α(µ(t)) = lim sup
t→∞

log |1− pµ(t)|
µ(t)

< 0
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when

µ = lim sup
t→∞

µ(t) > 0.

In this case, as in Corollary 5.7, (5.19) corresponds to

µ <
2

p
.

On the other hand, Corollary 5.8 indicates that the zero solution of equation (5.17)

is unstable if

(5.20) µ > −2

p

In this case the dynamic equation is a difference equation (with possibly nonconstant

graininess), and so (5.15) can be written in the more standard update form

zn+1 = (1− pµ(tn))zn + pµ(tn)z2
n.

Condition (5.20) indicates that for sufficiently large t,

1− pµ(tn) > 3.

It is well known that the related logistic map

xn+1 = γxn(1− xn)

exhibits (at least) sustained positive oscillations precisely when γ > 3. Condition

(5.20) gives an estimate for the loss of stability threshold of the positive equilibrium

in terms of the graininess of the time scale, signaling the onset of more complicated

qualitative behavior.
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