CHAPTER 10

Pricing of Further Derivatives

10.1. In-Arrears Swaps

Definition 10.1 (In-arrears swaps). An in-arrears swap of payer type, depending on the notional value N, the fixed rate K, and the set of times T, is a contract, where its holder pays $NK\tau(T_i, T_{i+1})$ and receives $N\tau(T_i, T_{i+1})L(T_i, T_{i+1})$ units of currency at the same time T_i, for all $\alpha + 1 \leq i \leq \beta$.

Remark 10.2 (In-arrears swaps). An in-arrears swap is an IRS that resets at dates $T_{\alpha+1}, \ldots, T_{\beta}$ and pays at the same dates, with notional value N and fixed-leg rate K. The discounted payoff of an in-arrears swap of payer type is

$$N \sum_{i=\alpha+1}^{\beta} (L(T_i, T_{i+1}) - K) \tau_{i+1} D(t, T_i).$$

Lemma 10.3. Assume $0 \leq t \leq T \leq S$. If X is $\mathcal{F}(T)$-measurable, then

$$E(D(t,T)X|\mathcal{F}(t)) = E\left(D(t,S)X \middle| \mathcal{F}(t)\right).$$

Theorem 10.4 (Price of in-arrears swaps in the LFM model). In the LFM model, the price of an in-arrears swap of payer type with notional value N, fixed rate K, and the set of times T, is given by

$$\text{IAS}(t, T, N, K) = N \sum_{i=\alpha+1}^{\beta} \left\{ \begin{array}{l} P(t, T_{i+1}) \left(1 + 2\tau_{i+1} F_{i+1}^2(t) + \tau_{i+1}^2 F_{i+1}^2(t) e^{v_i^2(t)} \right) \\ -(1 + \tau_{i+1} K) P(t, T_i) \end{array} \right\},$$

where

$$v_i(t) = \sqrt{\int_t^{T_{i-1}} \sigma_u^2 \, du}, \quad \alpha + 1 \leq i \leq \beta.$$

Lemma 10.5. Define

$$B_i(T, S) = \frac{1 - e^{-k_i(S-T)}}{k_i} \quad \text{and} \quad B_{ij}(T, S) = \frac{1 - e^{-(k_i+k_j)(S-T)}}{k_i + k_j}$$

61
PRICING OF FURTHER DERIVATIVES

for \(i, j \in \{1, 2\} \). Then we have

\[
\int_t^{\hat{T}} (B_i(u, S) - B_i(u, T)) \left(B_j(u, S) - B_j(u, \hat{T}) \right) du = e^{-k_i(T-\hat{T})} e^{-k_j(\hat{T}-T)} B_i(T, S) B_j(\hat{T}, S) B_{ij}(t, \hat{T}).
\]

Theorem 10.6 (Price of in-arrears swaps in the G2++ model). In the G2++ model, the price of an in-arrears swap of payer type with notional value \(N \), fixed rate \(K \), and the set of times \(T \), is given by

\[
IAS(t, T, N, K) = N \sum_{i=\alpha+1}^{\beta} P(t, T_i) \left(\frac{P(t, T_i) e^{V^2_{i+1}(t)}}{P(t, T_{i+1})} - (1 + K_{\tau_{i+1}}) \right),
\]

where

\[
V^2_i(t) = \sigma_1^2 B^2_1(T_{i-1}, T_i) B_{11}(t, T_{i-1}) + \sigma_2^2 B^2_2(T_{i-1}, T_i) B_{22}(t, T_{i-1})
+ 2\sigma_1\sigma_2 \rho B_1(T_{i-1}, T_i) B_2(T_{i-1}, T_i) B_{12}(t, T_{i-1}).
\]

10.2. In-Arrears Caps

Definition 10.7 (In-arrears caps). An in-arrears cap of payer type, depending on the notional value \(N \), the cap rate \(K \), and the set of times \(T \), is a contract, where its holder pays \(N\tau(T_i, T_{i+1})K \) and receives \(N\tau(T_i, T_{i+1})L(T_i, T_{i+1}) \) units of currency at the same time \(T_i \), but only if \(L(T_i, T_{i+1}) > K \), for all \(\alpha + 1 \leq i \leq \beta \).

Remark 10.8 (In-arrears caps). An in-arrears cap is composed by caplets resetting at dates \(T_{\alpha+1}, \ldots, T_{\beta} \) and paying at the same dates, with notional value \(N \) and cap rate \(K \). The discounted payoff of an in-arrears cap of payer type is

\[
N \sum_{i=\alpha+1}^{\beta} (L(T_i, T_{i+1}) - K)^+ \tau_{i+1} D(t, T_i).
\]

Lemma 10.9. Let \(K > 0 \). If \(Y \) is lognormally distributed such that \(E(\ln(Y)) = M \) and \(V(\ln(Y)) = V^2 \), then

\[
E(Y(Y - K)^+) = e^{M + \frac{V^2}{2}} \text{Bl} \left(K e^{-V^2}, e^{M + \frac{V^2}{2}}, V \right).
\]

Theorem 10.10 (Price of in-arrears caps in the LFM model). In the LFM model, the price of an in-arrears cap of payer type with notional value \(N \), cap rate
10.3. Caps with Deferred Caplets

K, and the set of times \mathcal{T}, is given by

$$IAC(t, \mathcal{T}, N, K) = N \sum_{i=\alpha+1}^{\beta} P(t, T_{i+1}) \tau_{i+1} \left\{ \text{Bl} (K, F_{i+1}(t), v_{i+1}(t)) + \tau_{i+1} F_{i+1}(t) e^{V_{i+1}(t)} \text{Bl} \left(K e^{-v_{i+1}^2(t)}, F_{i+1}(t), v_{i+1}(t) \right) \right\},$$

where v_i is as given in Theorem 10.4.

Theorem 10.11 (Price of in-arrears caps in the G2++ model). In the G2++ model, the price of an in-arrears cap of payer type with notional value N, fixed rate K, and the set of times \mathcal{T}, is given by

$$IAC(t, \mathcal{T}, N, K) = N \sum_{i=\alpha+1}^{\beta} P(t, T_i) \text{Bl} \left(1 + K \tau_{i+1}, \frac{P(t, T_{i+1}) e^{V_{i+1}(t)}}{P(t, T_{i+1})}, V_{i+1}(t) \right),$$

where $V_i(t)$ is as in Theorem 10.6.

10.3. Caps with Deferred Caplets

Definition 10.12 (Caps with deferred caplets). A cap with deferred caplets of payer type, depending on the notional value N, the cap rate K, and the set of times \mathcal{T}, is a contract, where its holder pays $N \tau (T_{i-1}, T_i) K$ and receives $N \tau (T_{i-1}, T_i) L(T_{i-1}, T_i)$ units of currency at the same time T_β, but only if $L(T_{i-1}, T_i) > K$, for all $\alpha + 1 \leq i \leq \beta$.

Remark 10.13 (Caps with deferred caplets). Caps with deferred caplets are caps for which all caplets payments occur at the final time T_β. The discounted payoff of a cap with deferred caplets of payer type is

$$N \sum_{i=\alpha+1}^{\beta} (L(T_{i-1}, T_i) - K)^+ \tau_i D(0, T_\beta).$$

Definition 10.14 (Forward-rate dynamics in the partially frozen LFM model). In the partially frozen LFM model (with respect to the terminal measure), the simply-compounded forward interest rates F_i is assumed to satisfy the stochastic differential equation

$$dF_i(t) = \sigma_i(t) F_i(t) dW^{T_\beta}(t) - \sum_{j=\alpha+1}^{\beta} \frac{\tau_j \sigma_j(t) \sigma_i(t) F_j(0) F_i(0)}{1 + \tau_j F_j(0)} dt,$$
where \(\sigma_j \) are deterministic and \(W^S \) is a Brownian motion under the \(S \)-forward measure.

Remark 10.15. The dynamics of the forward rate in the partially frozen LFM model is an approximation of the corresponding dynamics in the LFM model, by replacing \(F_j(t) \) twice by \(F_j(0) \) in the drift of the last formula of Theorem 8.6.

Theorem 10.16 (Price of caps with deferred caplets in the partially frozen LFM model). In the partially frozen LFM model, the price of a cap with deferred caplets of payer type with notional value \(N \), cap rate \(K \), and the set of times \(T \), is given by

\[
\text{CDC}(0, T, N, K) = N \sum_{i=\alpha+1}^{\beta} P(0, T_i) \times \\
\times B_i \left(K, F_i(0) \exp \left(- \sum_{j=i+1}^{\beta} \int_0^{T_i-1} \sigma_i(u) \sigma_j(u) \, du \right), v_i(0) \right),
\]

where \(v_i \) is as given in Theorem 10.4.

Theorem 10.17 (Price of caps with deferred caplets in the G2++ model). In the G2++ model, the price of an in-arrears swap of payer type with notional value \(N \), fixed rate \(K \), and the set of times \(T \), is given by

\[
\text{CDC}(t, T, N, K) = N \sum_{i=\alpha+1}^{\beta} P(t, T_i) \times B_i \left(1 + \tau_i K, \frac{P(t, T_i)}{P(t, T_i)}, V_i(t) \right),
\]

where \(V_i(t) \) is as in Theorem 10.6 and

\[
\tilde{V}_i^2(t) = \sigma_1^2 e^{-k_1(T_i-T_{i-1})} B_1(T_{i-1}, T_i) B_1(T_i, T_\beta) B_{11}(t, T_{i-1}) \\
+ \sigma_2^2 e^{-k_2(T_i-T_{i-1})} B_2(T_{i-1}, T_i) B_2(T_i, T_\beta) B_{22}(t, T_{i-1}) \\
+ \sigma_1 \sigma_2 \rho (B_1(T_{i-1}, T_i) B_2(T_i, T_\beta) + B_2(T_{i-1}, T_i) B_1(T_i, T_\beta)) B_{12}(t, T_{i-1}).
\]