CHAPTER 7

Heath–Jarrow–Morton Framework

7.1. Heath–Jarrow–Morton Model

Definition 7.1 (Forward-rate dynamics in the HJM model). In the Heath–Jarrow–Morton model, briefly HJM model, the instantaneous forward interest rate with maturity T is assumed to satisfy the stochastic differential equation

$$df(t, T) = \alpha(t, T)dt + \sigma(t, T)dW(t),$$

where α and σ are adapted and W is a Brownian motion under the risk-neutral measure.

Theorem 7.2 (Bond-price dynamics in the HJM model). In the HJM model, the price of a zero-coupon bond with maturity T satisfies the stochastic differential equation

$$dP(t, T) = \left(r(t) + A(t, T) + \frac{1}{2}\Sigma^2(t, T)\right)P(t, T)dt + \Sigma(t, T)P(t, T)dW(t),$$

where

$$A(t, T) = -\int_t^T \alpha(t, u)du \quad \text{and} \quad \Sigma(t, T) = -\int_t^T \sigma(t, u)du.$$

Theorem 7.3 (Bond-price dynamics implying HJM model). If the price of a zero-coupon bond with maturity T satisfies the stochastic differential equation

$$dP(t, T) = m(t, T)P(t, T)dt + v(t, T)P(t, T)dW(t),$$

where m and v are adapted, then the forward-rate dynamics are as in the HJM model with

$$\alpha(t, T) = v(t, T)v_T(t, T) - m_T(t, T) \quad \text{and} \quad \sigma(t, T) = -v_T(t, T).$$
Theorem 7.4 (Drift restriction in the HJM model). In the HJM model, we necessarily have
\[A(t, T) = -\frac{1}{2} \Sigma^2(t, T) \quad \text{and} \quad \alpha(t, T) = \sigma(t, T) \int_t^T \sigma(t, u) \, du. \]

Theorem 7.5 (Bond-price dynamics in the HJM model). In the HJM model, the price of a zero-coupon bond with maturity T satisfies the stochastic differential equations
\[\frac{dP(t, T)}{P(t, T)} = r(t) \, dt + \Sigma(t, T) \, dW(t) \]
and
\[\frac{d}{P(t, T)} = \frac{\Sigma^2(t, T) - r(t)}{P(t, T)} \, dt - \frac{\Sigma(t, T)}{P(t, T)} \, dW(t). \]

Theorem 7.6 (T-forward measure dynamics of the forward rate in the HJM model). Under the T-forward measure Q^T, the instantaneous forward interest rate with maturity T in the HJM model satisfies
\[df(t, T) = \sigma(t, T) \, dW^T(t), \]
where the Q^T-Brownian motion W^T is defined by
\[dW^T(t) = dW(t) - \Sigma(t, T) \, dt. \]

Theorem 7.7 (Forward-rate dynamics in the HJM model). In the HJM model, the simply-compounded forward interest rate for the period $[T, S]$ satisfies the stochastic differential equation
\[dF(t; T, S) = \left(F(t; T, S) + \frac{1}{\tau(T, S)} \right) (\Sigma(t, T) - \Sigma(t, S)) \, dW^S(t). \]

Theorem 7.8 (Zero-coupon bond in the HJM model). Let $0 \leq t \leq T \leq S$. In the HJM model, the price of a zero-coupon bond with maturity S at time T is given by
\[P(T, S) = \frac{P(t, S)}{P(t, T)} e^Z, \]
where
\[Z = -\frac{1}{2} \int_t^T (\Sigma^2(u, S) - \Sigma^2(u, T)) \, du + \int_t^T (\Sigma(u, S) - \Sigma(u, T)) \, dW(u) \]
\[= -\frac{1}{2} \int_t^T (\Sigma(u, S) - \Sigma(u, T))^2 \, du + \int_t^T (\Sigma(u, S) - \Sigma(u, T)) \, dW^T(u). \]
7.2. Gaussian HJM Model

Definition 7.9 (Gaussian HJM Model). A Gaussian HJM model is an HJM model in which \(\sigma \) is a deterministic function.

Theorem 7.10 (Option on a zero-coupon bond in a Gaussian HJM model).

In a Gaussian HJM model, the price of a European call option with strike \(K \) and maturity \(T \) and written on a zero-coupon bond with maturity \(S \) at time \(t \in [0, T] \) is given by

\[
Z_{BC}(t, T, S, K) = P(t, S)\Phi(h) - KP(t, T)\Phi(h - \sigma^*),
\]

where

\[
\sigma^* = \sqrt{\int_t^T (\Sigma(u, S) - \Sigma(u, T))^2 \, du}
\]

and

\[
h = \frac{1}{\sigma^*} \ln \left(\frac{P(t, S)}{P(t, T)K} \right) + \frac{\sigma^*}{2}.
\]

The price of a corresponding put option is given by

\[
Z_{BP}(t, T, S, K) = KP(t, T)\Phi(-h + \sigma^*) - P(t, S)\Phi(-h).
\]

Definition 7.11 (Futures price). The futures price at time \(t \) of an asset whose value at time \(T \geq t \geq 0 \) is \(X(T) \) is given by

\[
\text{Fut}(t, T) = \mathbb{E}(X(T)|\mathcal{F}(t)).
\]

Theorem 7.12 (Futures contract on a zero-coupon bond in a Gaussian HJM model). In a Gaussian HJM model, the price of a futures contract with maturity \(T \) on a zero-coupon bond at time \(T \) with maturity \(S \) is given by

\[
\text{FUT}(t, T, S) = \frac{P(t, S)}{P(t, T)} \exp \left\{ \int_t^T \Sigma(u, T) (\Sigma(u, T) - \Sigma(u, S)) \, du \right\}.
\]

7.3. Ritchken–Sankarasubramanian Model

Definition 7.13 (HJM model with separable volatility). An HJM model with separable volatility is an HJM model in which there exist positive functions \(\xi \) and \(\eta \) such that

\[
\sigma(t, T) = \xi(t)\eta(T).
\]
Theorem 7.14 (Zero-coupon bond in an HJM model with separable volatility). In an HJM model with separable volatility, the price of a zero-coupon bond with maturity \(T \) at time \(t \in [0, T] \) is given by

\[
P(t, T) = \frac{P(0, T)}{P(0, t)} \exp \left\{ f(0, t)B(t, T) - \frac{1}{2} \phi(t)B^2(t, T) \right\} e^{-r(t)B(t, T)},
\]

where

\[
\phi(t) = \int_t^0 \sigma^2(u, t)du \quad \text{and} \quad B(t, T) = \frac{1}{\eta(t)} \int_t^T \eta(u)du.
\]

Theorem 7.15 (Short-rate dynamics in an HJM model with separable volatility). In an HJM model with separable volatility, the short rate satisfies the stochastic differential equation

\[
\begin{aligned}
\frac{dr(t)}{dt} &= \left\{ \frac{\partial f(0, t)}{\partial t} + \phi(t) \right\} dt + \frac{r(t) - f(0, t)}{\eta(t)} d\eta(t) \\
&\quad + \xi(t)(d\eta(t))(dW(t)) + \sigma(t, t)dW(t),
\end{aligned}
\]

where \(\phi \) is as in Theorem 7.14.

Corollary 7.16 (Short-rate dynamics in a Gaussian HJM model with separable volatility). In an HJM model with separable volatility in which \(\eta \) is deterministic, the short rate satisfies the stochastic differential equation

\[
\begin{aligned}
\frac{dr(t)}{dt} &= \left\{ \frac{\partial f(0, t)}{\partial t} - f(0, t) \frac{\eta'(t)}{\eta(t)} + \phi(t) + r(t) \frac{\eta'(t)}{\eta(t)} \right\} dt + \sigma(t, t)dW(t),
\end{aligned}
\]

where \(\phi \) is as in Theorem 7.14.

Theorem 7.17 (Option on a zero-coupon bond in a Gaussian HJM model with separable volatility). In a Gaussian HJM model with separable volatility, the price of a European call option with strike \(K \) and maturity \(T \) and written on a zero-coupon bond with maturity \(S \) at time \(t \in [0, T] \) is given by

\[
Z_{BC}(t, T, S, K) = P(t, S)\Phi(h) - KP(t, T)\Phi(h - \sigma^*),
\]

where

\[
\sigma^* = B(T, S)\sqrt{\int_t^T \sigma^2(u, T)du} \quad \text{and} \quad h = \frac{1}{\sigma^*} \ln \left(\frac{P(t, S)}{P(t, T)K} \right) + \frac{\sigma^*}{2}
\]

with \(B \) as in Theorem 7.14. The price of a corresponding put option is given by

\[
Z_{BP}(t, T, S, K) = KP(t, T)\Phi(-h + \sigma^*) - P(t, S)\Phi(-h).
\]
Theorem 7.18 (Futures contract on a zero-coupon bond in a Gaussian HJM model with separable volatility). In a Gaussian HJM model with separable volatility, the price of a futures contract with maturity T on a zero-coupon bond at time T with maturity S is given by

$$F(t, T, S) = P(t, S) P(t, T) \exp \left\{ -B(T, S) \int_t^T \sigma(u, u) \sigma(u, T) B(u, T) du \right\}.$$

Definition 7.19 (Ritchken–Sankarasubramanian model). The Ritchken–Sankarasubramanian model is an HJM model with separable volatility for which there exist functions σ and k such that

$$\xi(t) = \sigma(t) \exp \left\{ \int_0^t k(u) du \right\} \quad \text{and} \quad \eta(t) = \exp \left\{ -\int_0^t k(u) du \right\}.$$

Theorem 7.20 (Zero-coupon bond in the Ritchken–Sankarasubramanian model). In the Ritchken–Sankarasubramanian model, the price of a zero-coupon bond with maturity T at time $t \in [0, T]$ is given by

$$P(t, T) = \frac{P(0, T)}{P(0, t)} \exp \left\{ f(0, t) B(t, T) - \frac{1}{2} \phi(t) B^2(t, T) \right\} e^{-r(t) B(t, T)},$$

where

$$\phi(t) = \int_0^t \sigma^2(u) \exp \left\{ -2 \int_u^t k(v) dv \right\} du$$

and

$$B(t, T) = \int_t^T \exp \left\{ -\int_t^s k(u) du \right\} ds.$$

Theorem 7.21 (Short-rate dynamics in the Ritchken–Sankarasubramanian model). In a Ritchken–Sankarasubramanian model in which k is deterministic and positive, the short rate satisfies the stochastic differential equation

$$dr(t) = \left(k(t) f(0, t) + \frac{\partial f(0, t)}{\partial t} + \phi(t) - k(t) r(t) \right) dt + \sigma(t) dW(t)$$

with ϕ as in Theorem 7.20.

Definition 7.22 (Gaussian HJM model with exponentially damped volatility). A Gaussian HJM model with exponentially damped volatility is a Ritchken–Sankarasubramanian model in which the functions σ and k are positive constants.
Theorem 7.23 (The Gaussian HJM model with exponentially damped volatility and the Hull–White model). Suppose \(r \) is the short rate in a Gaussian HJM model with exponentially damped volatility. Then \(r \) is equal to the short rate in the corresponding calibrated Hull–White model.

Remark 7.24. Since for a Gaussian HJM model with exponentially damped volatility we have

\[
\sigma(t, T) = \sigma e^{-k(T-t)}, \quad B(t, T) = \frac{1 - e^{-k(T-t)}}{k},
\]

\[
\int_t^T \sigma^2(u, T) du = \frac{\sigma^2}{2k} \left(1 - e^{-2k(T-t)} \right), \quad \phi(t) = \frac{\sigma^2}{2k} \left(1 - e^{-2kt} \right),
\]

we may use Theorem 7.23 to show that

- Theorem 7.20 implies Theorem 5.12;
- Theorem 7.17 implies Theorem 5.13;
- Theorem 7.18 implies for the Hull–White model

\[
\text{FUT}(t, T, S) = \frac{P(t, S)}{P(t, T)} \exp \left(- \frac{\sigma^2}{2} B(T, S) B^2(t, T) \right).
\]

Definition 7.25 (Gaussian HJM model with constant volatility). A Gaussian HJM model with constant volatility is a Ritchken–Sankarasubramanian model in which \(\sigma \) is a positive constant and \(k = 0 \).

Theorem 7.26 (The Gaussian HJM model with constant volatility and the Ho–Le model). Suppose \(r \) is the short rate in a Gaussian HJM model with constant volatility. Then \(r \) is equal to the short rate in the corresponding calibrated Ho–Le model.

Remark 7.27. Since for a Gaussian HJM model with constant volatility we have

\[
\sigma(t, T) = \sigma, \quad B(t, T) = T - t, \quad \int_t^T \sigma^2(u, T) du = \sigma^2(T - t), \quad \phi(t) = \sigma^2 t,
\]

we may use Theorem 7.26 to show that

- Theorem 7.20 implies Theorem 5.4;
- Theorem 7.17 implies the formula for ZBC from Theorem 5.2;
- Theorem 7.18 implies for the Ho–Le model

\[
\text{FUT}(t, T, S) = \frac{P(t, S)}{P(t, T)} \exp \left(- \frac{\sigma^2}{2} (S - T)(T - t)^2 \right).
\]
7.4. Mercurio–Moraleda Model

Definition 7.28 (Gaussian HJM model with volatility depending on time to maturity). A Gaussian HJM model with volatility depending on time to maturity is an HJM model in which there exists a deterministic function h such that

$$\sigma(t, T) = h(T - t).$$

Theorem 7.29 (Option on a zero-coupon bond in a Gaussian HJM model with volatility depending on time to maturity). In a Gaussian HJM model with volatility depending on time to maturity, the price of a European call option with strike K and maturity T and written on a zero-coupon bond with maturity S at time $t \in [0, T]$ is given by

$$ZBC(t, T, S, K) = P(t, S)\Phi(h) - KP(t, T)\Phi(h - \sigma^*),$$

where

$$\sigma^* = \sqrt{\int_0^\tau \left(\int_u^{u+\mu} h(x)dx\right)^2 du \quad \text{with} \quad \tau = T - t \quad \text{and} \quad \mu = S - T}$$

and

$$h = \frac{1}{\sigma^*} \ln \left(\frac{P(t, S)}{P(t, T)K}\right) + \frac{\sigma^*}{2}.$$

The price of a corresponding put option is given by

$$ZBP(t, T, S, K) = KP(t, T)\Phi(-h + \sigma^*) - P(t, S)\Phi(-h).$$

Theorem 7.30 (Futures contract on a zero-coupon bond in a Gaussian HJM model with volatility depending on time to maturity). In a Gaussian HJM model with volatility depending on time to maturity, the price of a futures contract with maturity T on a zero-coupon bond at time T with maturity S is given by

$$\text{FUT}(t, T, S) = \frac{P(t, S)}{P(t, T)} \exp \left\{ \int_0^\tau \left(\int_0^u h(x)dx\right) \left(\int_u^{u+\mu} h(x)dx\right) du \right\}$$

with τ and μ as in Theorem 7.29.

Definition 7.31 (Mercurio–Moraleda model). The Mercurio–Moraleda model is a Gaussian HJM model with volatility depending on time to maturity for which there exist constants $\sigma, \gamma, \lambda > 0$ such that

$$h(x) = \sigma(1 + \gamma x)e^{-\frac{\lambda}{2} x}.$$
Theorem 7.32 (Option on a zero-coupon bond in the Mercurio–Moraleda model). In the Mercurio–Moraleda model, the price of a European call option with strike K and maturity T and written on a zero-coupon bond with maturity S at time $t \in [0, T]$ is given by

$$Z_{BC}(t, T, S, K) = P(t, S)\Phi(h) - KP(t, T)\Phi(h - \sigma^*),$$

where

$$\sigma^* = \frac{2\sigma}{\lambda^{7/2}} \sqrt{(\alpha^2\lambda^2 + 2\alpha\beta\lambda + 2\beta^2)(1 - e^{-\lambda\tau}) - \lambda\beta\tau(2\alpha\lambda + 2\beta + \beta\lambda\tau)e^{-\lambda\tau}}$$

and

$$h = \frac{1}{\sigma^*} \ln \left(\frac{P(t, S)}{P(t, T)K} \right) + \frac{\sigma^*}{2}$$

with

$$\alpha = (\lambda + 2\gamma)(1 - e^{-\frac{1}{2}\mu}) - \gamma\lambda e^{-\frac{1}{2}\mu}, \quad \beta = \gamma\lambda(1 - e^{-\frac{1}{2}\mu})$$

and τ and μ are as in Theorem 7.29. The price of a corresponding put option is given by

$$Z_{BP}(t, T, S, K) = KP(t, T)\Phi(-h + \sigma^*) - P(t, S)\Phi(-h).$$

Theorem 7.33 (Futures contract on a zero-coupon bond in the Mercurio–Moraleda model). In the Mercurio–Moraleda model, the price of a futures contract with maturity T on a zero-coupon bond at time T with maturity S is given by

$$FUT(t, T, S) = \frac{P(t, S)}{P(t, T)} \exp \left(\frac{4\sigma^2}{\lambda^2} z \right)$$

with

$$z = \frac{\alpha_0\lambda^2 + \alpha_0\beta\lambda + \alpha_0\beta_0\lambda + 2\beta_0\beta_0}{\lambda^3} (e^{-\lambda\tau} - 1) + \frac{\alpha_0\beta\lambda + \beta_0\alpha\lambda + 2\beta_0\tau e^{-\lambda\tau}}{\lambda^2} + \frac{\beta_0\tau e^{-\lambda\tau}}{\lambda} + \frac{2\alpha_0(\alpha\lambda + 2\beta)}{\lambda^2} \left(1 - e^{-\frac{1}{2}\tau} \right) - \frac{2\beta_0}{\lambda} \tau e^{-\frac{1}{2}\tau}$$

where α, β, τ, μ are as in Theorem 7.32 and

$$\alpha_0 = \lambda + 2\gamma \quad \text{and} \quad \beta_0 = \gamma\lambda.$$