37. Where are the following \(f : \mathbb{R} \to \mathbb{R} \) continuous?

\[
f(x) = \begin{cases}
 x & \text{if } x < 0 \\
 x^2 & \text{if } x \geq 0
\end{cases}
\]

and

\[
f(x) = \begin{cases}
 0 & \text{if } x \leq 1 \\
 x & \text{if } x > 1.
\end{cases}
\]

38. Prove that there exists an \(x > 0 \) with \(\frac{1}{\sqrt{x^2+x^2}} + x^2 - 2x = 0 \).

39. For the following functions \(f \), use the Intermediate Value Theorem to show that \(f \) has a zero in the interval \(I \). Then use the Bisection Method to find an interval of length at most 0.01 that contains this zero. Then find all zeros of \(f \).

(a) \(f(x) = \frac{x^3-6x+17}{x-1}, \quad I = [2, 3] \) and \(I = [0, 2] \);

(b) \(f(x) = x^3 + \frac{5}{8} x^2 - \frac{27}{8} x + \frac{9}{8}, \quad I = [0, 1] \).

40. Determine \(\max f(M) \) provided it exists:

(a) \(f(x) = x^2 + 1, \quad M = [-4, 2] \) and \(f(x) = \sqrt{x}, \quad M = [0, 3] \);

(b) \(f(x) = -[x], \quad M = [-1, 2] \) and \(f(x) = x^2 - x[x], \quad M = [-5, 5] \).

41. Prove or disprove that \(f \) is continuous at \(x_0 \), using the “\(\varepsilon - \delta \)” Criterion:

(a) \(f(x) = x^3 + x, \quad x_0 = 2 \);

(b) \(f(x) = \frac{x^3-2}{x+1}, \quad x_0 = 1 \);

(c) \(f(x) = \begin{cases}
 x & \text{if } x < 0 \\
 x + 1 & \text{if } x \geq 0
\end{cases}, \quad x_0 = 0 \);

(d) \(f(x) = e(x), \quad x_0 = 1 \) (see \#36).

42. Determine whether the following functions are uniformly continuous. Prove your claim.

(a) \(f(x) = 6x + 7, \quad f : \mathbb{R} \to \mathbb{R} \);

(b) \(f(x) = \frac{1}{1+x^2}, \quad f : \mathbb{R} \to \mathbb{R} \);

(c) \(f(x) = x^3, \quad f : \mathbb{R} \to \mathbb{R} \);

(d) \(f(x) = \frac{x}{x-1}, \quad f : [2, \infty) \to \mathbb{R} \).

43. Let \(a, b \in \mathbb{R} \) with \(a < b \). Find a continuous function \(f : (a, b) \to \mathbb{R} \) that is not uniformly continuous.