The sequence \(\{x_n\} \) is called bounded if \(\text{Condition:} \). If \(\{x_n\} \) converges, then it also satisfies the Condition:

If \(a_n \to \alpha \in \mathbb{R} \) and \(b_n \to \beta \in \mathbb{R} \), then \(a_n + b_n \to \), \(a_n \cdot b_n \to \), and (if \() \) \(\frac{a_n}{b_n} \to \) as \(n \to \infty \), and if \(a_n \leq b_n \) \(\forall n \in \mathbb{N} \), then . Next, \(\{x_n\} \) is called strictly decreasing if . The Monotone Convergence Theorem says that

\[a_n = \left(1 + \frac{1}{n}\right)^n \] is , since it is strictly and by .

A sequence \(\{x_n\} \) is called a subsequence of \(\{x_n\} \) provided and using peak indices we showed that . The Theorem of Bolzano - says that if \(a \leq a_n \leq b \) for all \(n \in \mathbb{N} \), then . Next, \(g : S \to \mathbb{R} \) is called increasing if . We defined \(g \) to be continuous at \(\alpha \in S \) provided . Then we showed that this definition of continuity is equivalent to the so-called \(\varepsilon/\delta \) characterization:

Next, a function \(g : S \to \mathbb{R} \) is called uniformly continuous if . We derived the following necessary condition for uniform continuity:

The two major results on continuous functions are as follows:

Value Theorem:

Value Theorem:

For a limit point \(x_0 \in D \) and a function \(f : D \to \mathbb{R} \) we write \(\lim_{x \to x_0} f(x) = l \) provided . Then a function \(f : (a,b) \to \mathbb{R} \) is called differentiable at the point \(x_0 \in (a,b) \) if . The following rules hold: \((fg)' = \) \(\left(\frac{f}{g}\right)' = \)
\[(f \circ g)' = (f^{-1})' = \]. If \(f : (a, b) \to \mathbb{R}\), then

\(x_0 \in (a, b)\) is called a local minimizer provided

and if \(f\) is also differentiable at \(x_0\), then \(x_0\) is called a critical point of \(f\) if

Now suppose \(f, g : [a, b] \to \mathbb{R}\) are differentiable on \((a, b)\) and continuous on \([a, b]\), where \(a < b\).

We proved Rolle’s theorem:

the Cauchy mean value theorem:

and the Lagrange mean value theorem:

Applications of the LMVT are the identity criterion:

and the test for a function to be strictly increasing:

Show that \(\lim_{n \to \infty} \left\{ \sum_{k=1}^{n} \frac{1}{k} - l(n) \right\}\) exists.

Is \(f : \mathbb{R} \to \mathbb{R}\) defined by \(f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}\) differentiable at 0?