114. Determine whether the following arcs are rectifiable, and find the arc lengths:

(a) \(x(t) = \begin{pmatrix} r \cos t \\ r \sin t \\ ht^2 \end{pmatrix}, \ t \in [0, 2\pi] \ (r, h > 0 \text{ are fixed}); \)

(b) \(x(t) = \begin{pmatrix} t \\ t \sin \left(\frac{1}{t}\right) \end{pmatrix}, \ t \in (0, 1], \ x(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. \)

115. Consider \(x_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ x_n = \begin{pmatrix} 1/2^n \\ a \end{pmatrix} \) for \(n \in \mathbb{N} \), \(y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \), and the set \(M \) defined as \(\bigcup_{n \in \mathbb{N}} x_0 x_n \cup \{y\} \), where \(ab \) denotes the line connecting the points \(a \) and \(b \). Graph \(M \). Is \(M \) open? Is \(M \) connected? Is \(M \) arcwise connected?

116. Consider two nonempty convex sets \(M_1, M_2 \subset \mathbb{R}^n \). Show:

(a) \(M_1 - M_2 := \{x - y : x \in M_1, y \in M_2\} \) is convex.

(b) If \(M_1 \cap M_2 = \emptyset \), then there exist \(p_0 \in \mathbb{R}^n \setminus \{0\} \) and \(\alpha \in \mathbb{R} \) with
\[p_0^T x \geq \alpha \geq p_0^T y \text{ for all } x \in M_1 \text{ and all } y \in M_2. \]

117. Let \(A \) be a symmetric \(n \times n \)-matrix and define \(f : \mathbb{R}^n \to \mathbb{R} \) by \(f(x) = x^T A x \).

Show that \(f \) is convex iff the matrix \(A \) is positive semidefinite.

118. Determine whether the following functions \(f : \mathbb{R}^2 \to \mathbb{R} \) are convex:

(a) \(f(x, y) = x^2 + 3y^2 - 3xy; \)

(b) \(f(x, y) = 2x^2 - y^2 + 4xy. \)

119. Suppose \(M \subset \mathbb{R}^n \) is convex. Show that a function \(f : M \to \mathbb{R} \) is convex iff the so-called epigraph \(\{(x, y) \in M \times \mathbb{R} : f(x) \leq y\} \) is convex.

120. Suppose \(M \subset \mathbb{R}^n \) is convex and \(f : M \to \mathbb{R} \) is strictly convex. Assume that there exists \(x_0 \in M \) with \(f(x_0) = \max f(M) \). Prove that \(x_0 \in \partial M \).

121. Suppose \(M \subset \mathbb{R}^n \) is closed and convex, and let \(x_0 \in \mathbb{R}^n \). Prove that there exists exactly one \(a \in M \) with \(d(x_0, M) = \|x_0 - a\| \).