A function f is said to be represented by a power series around a provided $f(x) =$			
If R is the radius of convergence of a power series, then it converges uniformly on			
Within the radius of convergence, we have the formula $\int f$		$f^{(n)}(x) =$. By us-
ing these formulas, we can find	$\sum_{k=1}^{\infty} \frac{1}{k2^k} =$	and $\sum_{k=1}^{\infty} \frac{1}{2^k} =$. Abel's
theorem says that			
Taylor's theorem says that			
Taylor's theorem and Abel's theorem	rem can be used to find	$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} =$. We de-
fined the exponential function E by $E(z) =$ for all $z \in \mathbb{C}$. We defined the			
number e as f . We defined the trigonometric functions S and			
C by $S(x) =$	and $C(x) =$. We defined the number π as	
. A sequence $\{\phi_n\}_{n\in\mathbb{N}}$ is called an orthogonal system of functions			
on $[a, b]$ if It is called orthonormal on $[a, b]$ if in addition			
. In this case the Fourier coefficients of a function f are			
defined by . The Fourier series of an even function can be written			
as and the Fourier series of an odd func-			
tion can be written as . Bessel's inequal-			
ity says . The Dirichlet kernel is defined as			

