Exam $#3$, Math 315, I	Dr. M. Bo	ohner, A	pr 29, 2005.	N	ame:				
The volume of an inte	erval $I =$	$[a_1, b_1] >$	$\langle \cdots \times [a_N, b]$	$_{N}$] is o	lefined by	I =		. The	
outer measure of any	set $A \subset$	\mathbb{R}^N is d	efined by						
$\mu^*(A) =$									
For $A = \{a\}$ we have	$\mu^*(A)$	=	. If <i>I</i> is						
The outer measure is monotone, i.e., , and it is subadditive, i.e.									
		. A s	$et \ A \subset \mathbb{R}^N$	is said	l to be Le	ebesgue n	neasurable pr	ovided	
An example of a not L	ebesgue	measura	ble set is						
A set $\mathcal{A} \subset \mathcal{P}(X)$ is cal	alled a σ	-algebra	in X if						
A triple (X, \mathcal{A}, μ) is c	called a r	neasure	space if						
								·	
A measure space is ca	lled com	plete pr	ovided				. We sho	owed the fol-	
lowing two results abo	out conti	nuity of t	the measure	:				. A func-	
tion $f: X \to \overline{\mathbb{R}}$ is call	ed measu	urable if						. A charac-	
teristic function K_E is	. If f is measurable, then so is $ f $,								
$f^+ =$, and	$f^- =$. Two	functions	s are said	to be equal a	lmost every-	
where if					·	A funct	ion is called a	summable if	
			. For a sum	mable	efunction	f we defi	ned the follow	ving objects:	
$A_{\infty}(f) =$, $A_{nk}(f)$	=				, and	
$s_n(f) =$. We then	defined	$\int_X f d\mu =$		

Please list here the m	ain propertie	es of the s	s_n together	with	their conse	equen	ces for the integral:		
If $x \ge 0$ and A is meas	surable, then	$\int_A c d\mu$; =	. W	e proved the	he fol	lowing characterization		
of functions that are s	summable ar	nd almost	everywhere	e equa	al to zero:		\Leftrightarrow		
Chebyschev's inequali	ty says that					. If	f is the Dirichlet func-		
tion, then $\int_X f d\mu =$	= If (X	(\mathcal{A}, μ) is	a measure	space,	then we d	lefine	d a new measure space		
(x, \mathcal{A}, ν) as follows:						. Pl	ease state here the fa-		
mous monotone conve	ergence theor	rem by Be	eppo Levi:						
Fatou's lemma says t	that								
A function $f: X \to \overline{X}$	$\overline{\mathbb{R}}$ is called in	ntegrable	if it is mea	surab	le and sat	isfies	,		
and in this case we define $\int_X f d\mu =$. Please							here the famous domi-		
nated convergence the	eorem by Lel	besgue:]				
For $p \ge 1$ we defined	$L^p(I) =$			e following inequalities:					
(Hölder)									
(Minkowski)									
The norm of an L^p -function f is defined by $ f =$. With respect to this norm,		
the spaces L^p are						I			