Problems \#1, Math 315, Dr. M. Bohner.Jan 10, 2005. Due Jan 19, 2 pm.

1. Are the following functions in $\mathrm{BV}[a, b]$ ? If so, find their total variations on $[a, b]$.
$f(x)=\left\{\begin{array}{lll}0 & \text { if } & x \leq 1 \\ 1 & \text { if } & x>1\end{array}\right.$ and $g(x)=\left\{\begin{array}{lll}0 & \text { if } & x \neq 1 \\ 1 & \text { if } & x=1 .\end{array}\right.$
2. Find $\bigvee_{0}^{3 \pi} \sin$.
3. Show that $f \in \mathrm{BV}[0,1]$, where $f$ is defined by

$$
f(x)=\left\{\begin{array}{lll}
x^{2} \sin (1 / x) & \text { if } & x \neq 0 \\
0 & \text { if } & x=0
\end{array}\right.
$$

4. Show that $f \in \mathrm{C}[0,1] \backslash \mathrm{BV}[0,1]$, where

$$
f(x)= \begin{cases}x \sin \frac{\pi}{2 x} & \text { if } \quad x \neq 0 \\ 0 & \text { if } \quad x=0\end{cases}
$$

Also show that $g$, defined by $g(x)=f\left(x^{2}\right)$, is differentiable but not of bounded variation on $[0,1]$.
5. Prove that Lipschitz functions are of bounded variation on $[a, b]$.
6. Prove that any step function is of bounded variation on $[a, b]$.
7. Prove that if $f, g \in \mathrm{BV}[a, b]$, then $f+g, f-g, f g \in \mathrm{BV}[a, b]$.
8. If $f:[a, b] \rightarrow \mathbb{R}$ is a monotonic function, find $v_{f}$.
9. Find $v_{f}$ for $f$ defined by $f(x)=\left\{\begin{array}{lll}x+1 & \text { if } & -1 \leq x<0 \\ x & \text { if } & 0 \leq x<1 \\ 1-x & \text { if } & 1 \leq x \leq 2 .\end{array}\right.$
10. Find $v_{\mathrm{sin}}:[0,2 \pi] \rightarrow \mathbb{R}$.
11. Show $\mathrm{BV}[a, b] \subset \mathrm{R}[a, b]$.

