89. Suppose (X, \mathcal{A}, μ) is a measure space, $f: X \rightarrow \mathbb{R}$ is measurable, and $A \in \mathcal{A}$ with $\mu(A)<\infty$. Show that f is integrable on A iff $\sum_{n=1}^{\infty} n \mu\left(A_{n}\right)<\infty$, where $A_{n}=\{x \in A: n-1 \leq|f(x)|<n\}$.
90. Suppose (X, \mathcal{A}, μ) is a measure space and $f: X \rightarrow \overline{\mathbb{R}}$ is integrable on X. Show that for each $\varepsilon>0$ there exists a simple function e such that $\int_{X}|f-e| d \mu<\varepsilon$.
91. Let $X=\mathbb{N}, \mathcal{A}=\mathcal{P}(X)$, and μ be the counting measure. Define $f: X \rightarrow \mathbb{R}$ by $f(n)=a_{n}$ for a given sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{R}$.
(a) Show that f is integrable iff $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent. Calculate $\int_{X} f d \mu$ in this case.
(b) Prove that if $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are real sequences with $\left|a_{n}\right| \leq b_{n}$ for all $n \in \mathbb{N}$ and such that $\sum_{n=1}^{\infty} b_{n}<\infty$, then $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
92. Show that for $\alpha \in \mathbb{R}$ and $\alpha>1$ we have

$$
\int_{0}^{\infty} \frac{x^{\alpha-1}}{e^{x}-1} d x=\Gamma(\alpha) \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}
$$

93. Suppose (X, \mathcal{A}, μ) is a measure space and f is summable. Define $\nu: \mathcal{A} \rightarrow[0, \infty]$ by $\nu(A)=\int_{A} f d \mu$ for all $A \in \mathcal{A}$. Show that any summable function h satisfies

$$
\int_{A} h d \nu=\int_{A} h f d \mu \quad \text { for all } \quad A \in \mathcal{A}
$$

94. A sequence f_{n} is said to be convergent to f almost everywhere, if $\lim _{n \rightarrow \infty} f_{n} \sim f$. Prove the following statements.
(a) $f_{n} \rightarrow f$ almost everywhere on $A \in \mathcal{A}$ iff $\mu\left(\limsup _{n \rightarrow \infty} A_{n}(\varepsilon)\right)=$ 0 for all $\varepsilon>0$, where $A_{n}(\varepsilon)=\left\{x \in A:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}$.
(b) If $\mu(A)<\infty$, then f_{n} tends to f almost everywhere on $A \in \mathcal{A}$ iff $\lim _{n \rightarrow \infty} \mu\left(\bigcup_{\nu=n}^{\infty} A_{\nu}(\varepsilon)\right)=0$ for all $\varepsilon>0$.
95. For f_{n} from $\# 85$, show that $f_{n} \rightarrow 0$ pointwise on X, but f_{n} does not converge in $L^{p}(X)$.
96. Prove that $L^{p}(I) \subset L^{1}(I)$ provided I is a bounded interval.
97. Suppose I is a bounded interval and $f_{n} \in L^{p}(I)$ converge uniformly on I to f. Show that then also $f \in L^{p}(I)$ and that $f_{n} \rightarrow f$ in the L^{p}-sense.
98. Suppose ν is a signed measure on (X, \mathcal{A}) and $\nu^{+}(A)=\nu(A P)$, $\nu^{-}(A)=\nu(A N)$ (with N and P from the Hahn decomposition), and $|\nu|(A)=\nu^{+}(A)+\nu^{-}(A)$. Show the following:
(a) ν^{+}and ν^{-}do not depend on P and N;
(b) At least one of the measures ν^{+}and ν^{-}is finite;
(c) $\nu^{+}(A)=\sup \{\nu(B): B \subset A, B \in \mathcal{A}\}$;
(d) $-\nu^{-}(A)=\inf \{\nu(B): B \subset A, B \in \mathcal{A}\}$;
(e) $|\nu(A)| \leq|\nu|(A)$;
(f) $\nu^{+}, \nu^{-}, \nu \ll|\nu|$;
(g) $\nu^{+}, \nu^{-}, \nu \ll \mu$.
