- Problems #11, Math 315, Dr. M. Bohner.Apr 18, 2005. Due May 2, 2 pm.
 - 89. Suppose (X, \mathcal{A}, μ) is a measure space, $f : X \to \mathbb{R}$ is measurable, and $A \in \mathcal{A}$ with $\mu(A) < \infty$. Show that f is integrable on A iff $\sum_{n=1}^{\infty} n\mu(A_n) < \infty$, where $A_n = \{x \in A : n-1 \le |f(x)| < n\}.$
 - 90. Suppose (X, \mathcal{A}, μ) is a measure space and $f: X \to \overline{\mathbb{R}}$ is integrable on X. Show that for each $\varepsilon > 0$ there exists a simple function e such that $\int_X |f - e| d\mu < \varepsilon$.
 - 91. Let $X = \mathbb{N}$, $\mathcal{A} = \mathcal{P}(X)$, and μ be the counting measure. Define
 - $f: X \to \mathbb{R}$ by $f(n) = a_n$ for a given sequence $\{a_n\}_{n \in \mathbb{N}} \subset \mathbb{R}$. (a) Show that f is integrable iff $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. Calculate $\int_X f d\mu$ in this case.
 - (b) Prove that if $\{a_n\}$ and $\{b_n\}$ are real sequences with $|a_n| \leq b_n$ for all $n \in \mathbb{N}$ and such that $\sum_{n=1}^{\infty} b_n < \infty$, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
 - 92. Show that for $\alpha \in \mathbb{R}$ and $\alpha > 1$ we have

$$\int_0^\infty \frac{x^{\alpha-1}}{e^x - 1} dx = \Gamma(\alpha) \sum_{n=1}^\infty \frac{1}{n^\alpha}.$$

93. Suppose (X, \mathcal{A}, μ) is a measure space and f is summable. Define $\nu: \mathcal{A} \to [0,\infty]$ by $\nu(\mathcal{A}) = \int_{\mathcal{A}} f d\mu$ for all $\mathcal{A} \in \mathcal{A}$. Show that any summable function h satisfies

$$\int_{A} h d\nu = \int_{A} h f d\mu \quad \text{for all} \quad A \in \mathcal{A}.$$

- 94. A sequence f_n is said to be convergent to f almost everywhere, if $\lim_{n\to\infty} f_n \sim f$. Prove the following statements.
 - (a) $f_n \to f$ almost everywhere on $A \in \mathcal{A}$ iff $\mu\left(\limsup_{n \to \infty} A_n(\varepsilon)\right) =$ 0 for all $\varepsilon > 0$, where $A_n(\varepsilon) = \{x \in A : |f_n(x) - f(x)| \ge \varepsilon\}.$
 - (b) If $\mu(A) < \infty$, then f_n tends to f almost everywhere on
- $A \in \mathcal{A}$ iff $\lim_{n\to\infty} \mu(\bigcup_{\nu=n}^{\infty} A_{\nu}(\varepsilon)) = 0$ for all $\varepsilon > 0$. 95. For f_n from #85, show that $f_n \to 0$ pointwise on X, but f_n does not converge in $L^p(X)$.
- 96. Prove that $L^p(I) \subset L^1(I)$ provided I is a bounded interval.
- 97. Suppose I is a bounded interval and $f_n \in L^p(I)$ converge uniformly on I to f. Show that then also $f \in L^p(I)$ and that $f_n \to f$ in the L^p -sense.
- 98. Suppose ν is a signed measure on (X, \mathcal{A}) and $\nu^+(A) = \nu(AP)$, $\nu^{-}(A) = \nu(AN)$ (with N and P from the Hahn decomposition), and $|\nu|(A) = \nu^+(A) + \nu^-(A)$. Show the following: (a) ν^+ and ν^- do not depend on P and N;
 - (b) At least one of the measures ν^+ and ν^- is finite;
 - (c) $\nu^+(A) = \sup\{\nu(B) : B \subset A, B \in \mathcal{A}\};$
 - (d) $-\nu^{-}(A) = \inf\{\nu(B) : B \subset A, B \in \mathcal{A}\};$
 - (e) $|\nu(A)| \le |\nu|(A);$
 - (f) $\nu^+, \nu^-, \nu \ll |\nu|;$
 - (g) $\nu^+, \nu^-, \nu \ll \mu$.