92. Show that for $\alpha > 90$. Suppose (X, \mathcal{A}, μ) is a measure space, $f : X \to \mathbb{R}$ is measurable, and $A \in \mathcal{A}$ with $\mu(A) < \infty$. Show that f is integrable on A if $\sum_{n=1}^{\infty} n\mu(A_n) < \infty$, where $A_n = \{x \in A : n - 1 \leq |f(x)| < n\}$.
93. Suppose (X, \mathcal{A}, μ) is a measure space and $f : X \to \mathbb{R}$ is integrable on X. Show that for each $\varepsilon > 0$ there exists a simple function e such that $\int_X |f - e|d\mu < \varepsilon$.
94. A sequence f is said to be convergent almost everywhere on X if $\lim_{n \to \infty} f_n(x) = f(x)$ for all $x \in X$ almost everywhere.
95. For $\nu : \mathcal{A} \to [0, \infty]$ by $\nu(A) = \int_A f d\mu$ for all $A \in \mathcal{A}$. Show that any summable function h satisfies $\int_A h d\nu = \int_A h f d\mu$ for all $A \in \mathcal{A}$.
96. Suppose ν is a signed measure on (X, \mathcal{A}) and $\nu^+(A) = \nu(\alpha A)$, $\nu^-(A) = \nu(\gamma A)$ (with α and γ from the Hahn decomposition), and $|\nu(A)| = \nu^+(A) + \nu^-(A)$. Show the following:
(a) ν^+ and ν^- do not depend on P and N;
(b) At least one of the measures ν^+ and ν^- is finite;
(c) $\nu^+(A) = \sup\{\nu(B) : B \subseteq A, B \in \mathcal{A}\}$;
(d) $-\nu^-(A) = \inf\{\nu(B) : B \subseteq A, B \in \mathcal{A}\}$;
(e) $|\nu(A)| \leq |\nu|(A)$;
(f) $\nu^+, \nu^-, \nu \ll |\nu|$:
(g) $\nu^+, \nu^-, \nu \ll \mu$.
98. Suppose ν is a signed measure on (X, \mathcal{A}) and $\nu^+(A) = \nu(\alpha A)$, $\nu^-(A) = \nu(\gamma A)$ (with α and γ from the Hahn decomposition), and $|\nu(A)| = \nu^+(A) + \nu^-(A)$. Show the following:
(a) ν^+ and ν^- do not depend on P and N;
(b) At least one of the measures ν^+ and ν^- is finite;
(c) $\nu^+(A) = \sup\{\nu(B) : B \subseteq A, B \in \mathcal{A}\}$;
(d) $-\nu^-(A) = \inf\{\nu(B) : B \subseteq A, B \in \mathcal{A}\}$;
(e) $|\nu(A)| \leq |\nu|(A)$;
(f) $\nu^+, \nu^-, \nu \ll |\nu|$:
(g) $\nu^+, \nu^-, \nu \ll \mu$.