Problems \#3, Math 315, Dr. M. Bohner.Jan 26, 2005. Due Feb 4, 2 pm.
21. Let $f_{n}(x)=x-\frac{x^{n}}{n}$. Find the limit function f of $\left\{f_{n}\right\}$ on $[0,1]$ and decide whether $f_{n}^{\prime} \rightarrow f^{\prime}$. Does $\int_{0}^{1} f_{n}(x) \mathrm{d} x \rightarrow \int_{0}^{1} f(x) \mathrm{d} x$ hold?
22. Let $f_{n}(x)=n x(1-x)^{n}$. Graph f_{1}, f_{2}, f_{5}, and f_{11} on $[0,1]$. Determine the limit function f of $\left\{f_{n}\right\}$ as $n \rightarrow \infty$. Is the limit function continuous? Is $f_{n}^{\prime} \rightarrow f^{\prime}$ true? How about the integral? Discuss whether $\left\{f_{n}\right\}$ is uniformly convergent on $[0,1]$.
23. Let $f_{n}(x)=n x e^{-n x}$. Is $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ uniformly convergent on $(0, \infty)$?
24. Assume $\alpha_{n} \rightarrow 0$. Show: $f_{n} \rightarrow f$ uniformly if $\left|f_{n}(x)-f(x)\right| \leq \alpha_{n}$ for all $n \geq N$ and all $x \in E$.
25. Let $f_{n}(x)=n x /\left(1+n^{2} x^{2}\right)$ for $x \in[0,1]$. Show that the sequence converges uniformly on $[q, 1]$ for any $q \in(0,1)$ but not on $[0,1]$.
26. Prove: If $f_{n} \rightarrow f$ uniformly on E and $g \in \mathrm{~B}(E)$, then $f_{n} g \rightarrow f g$ uniformly on E.
27. Prove: If $f_{n} \rightarrow f$ uniformly on E and $\left|f_{n}(x)\right| \geq \alpha>0$ for all $n \in \mathbb{N}$ and all $x \in E$, then $1 / f_{n} \rightarrow 1 / f$ uniformly on E.
28. Show: If $\sum_{k=0}^{\infty} a_{k}$ is absolutely convergent, then $\sum_{k=0}^{\infty} a_{k} \sin (k x)$ and $\sum_{k=0}^{\infty} a_{k} \cos (k x)$ converge uniformly on \mathbb{R}.
29. Let $F_{n}=\sum_{k=1}^{n} f_{k}$. Prove that $\sum_{k=1}^{\infty} f_{k} g_{k}$ converges uniformly provided $\left\{F_{n} g_{n+1}\right\}$ and $\sum_{k=1}^{\infty} F_{k}\left(g_{k}-g_{k+1}\right)$ converge uniformly.
30. Suppose that $\sum_{k=0}^{\infty} f_{k}$ converges uniformly, that $\left\{g_{k}(x)\right\}$ is a monotone sequence for each x, and that the sequence $\left\{\left\|g_{k}\right\|_{\infty}\right\}$ is bounded. Show that $\sum_{k=0}^{\infty} f_{k} g_{k}$ is uniformly convergent.
31. Suppose that $\left\{\left\|\sum_{k=1}^{n} f_{k}\right\|_{\infty}\right\}$ is bounded, that $\left\{g_{k}(x)\right\}$ is monotone for each x, and that $g_{k} \rightarrow 0$ uniformly. Show that $\sum_{k=0}^{\infty} f_{k} g_{k}$ is uniformly convergent.
32. Suppose that $g_{1} \geq g_{2} \geq \ldots$ and $g_{k} \rightarrow 0$ uniformly. Prove that $g_{1}-g_{2}+g_{3}-\ldots$ converges uniformly.

