Problems #3, Math 315, Dr. M. Bohner.Jan 26, 2005. Due Feb 4, 2 pm.

- 21. Let $f_n(x) = x \frac{x^n}{n}$. Find the limit function f of $\{f_n\}$ on [0, 1] and decide whether $f'_n \to f'$. Does $\int_0^1 f_n(x) dx \to \int_0^1 f(x) dx$ hold?
- 22. Let $f_n(x) = nx(1-x)^n$. Graph f_1 , f_2 , f_5 , and f_{11} on [0,1]. Determine the limit function f of $\{f_n\}$ as $n \to \infty$. Is the limit function continuous? Is $f'_n \to f'$ true? How about the integral? Discuss whether $\{f_n\}$ is uniformly convergent on [0,1].
- 23. Let $f_n(x) = nxe^{-nx}$. Is $\{f_n\}_{n \in \mathbb{N}}$ uniformly convergent on $(0, \infty)$?
- 24. Assume $\alpha_n \to 0$. Show: $f_n \to f$ uniformly if $|f_n(x) f(x)| \le \alpha_n$ for all $n \ge N$ and all $x \in E$.
- 25. Let $f_n(x) = nx/(1+n^2x^2)$ for $x \in [0,1]$. Show that the sequence converges uniformly on [q,1] for any $q \in (0,1)$ but not on [0,1].
- 26. Prove: If $f_n \to f$ uniformly on E and $g \in B(E)$, then $f_n g \to fg$ uniformly on E.
- 27. Prove: If $f_n \to f$ uniformly on E and $|f_n(x)| \ge \alpha > 0$ for all $n \in \mathbb{N}$ and all $x \in E$, then $1/f_n \to 1/f$ uniformly on E.
- 28. Show: If $\sum_{k=0}^{\infty} a_k$ is absolutely convergent, then $\sum_{k=0}^{\infty} a_k \sin(kx)$ and $\sum_{k=0}^{\infty} a_k \cos(kx)$ converge uniformly on \mathbb{R} .
- 29. Let $F_n = \sum_{k=1}^n f_k$. Prove that $\sum_{k=1}^{\infty} f_k g_k$ converges uniformly provided $\{F_n g_{n+1}\}$ and $\sum_{k=1}^{\infty} F_k(g_k g_{k+1})$ converge uniformly.
- 30. Suppose that $\sum_{k=0}^{\infty} f_k$ converges uniformly, that $\{g_k(x)\}$ is a monotone sequence for each x, and that the sequence $\{||g_k||_{\infty}\}$ is bounded. Show that $\sum_{k=0}^{\infty} f_k g_k$ is uniformly convergent.
- 31. Suppose that $\{\|\sum_{k=1}^{n} f_k\|_{\infty}\}$ is bounded, that $\{g_k(x)\}$ is monotone for each x, and that $g_k \to 0$ uniformly. Show that $\sum_{k=0}^{\infty} f_k g_k$ is uniformly convergent.
- 32. Suppose that $g_1 \ge g_2 \ge \ldots$ and $g_k \to 0$ uniformly. Prove that $g_1 g_2 + g_3 \ldots$ converges uniformly.