Problems \#5, Math 315, Dr. M. Bohner.Feb 11, 2005. Due Feb 21, 2 pm.
42. Evaluate $\sum_{k=1}^{\infty} 1 /\left(k 2^{k}\right)$ by integrating the geometric series.
43. Evaluate $\sum_{k=1}^{\infty} k / 2^{k}$ by differentiating the geometric series.
44. Show that f has derivatives of all orders at $x=0$ but is not analytic:

$$
f(x)= \begin{cases}\exp \left(-1 / x^{2}\right) & \text { if } \quad x \neq 0 \\ 0 & \text { if } \quad x=0\end{cases}
$$

45. Use Taylor expansion of $\log (1+x)$ to find $\sum_{n=0}^{\infty}(-1)^{n} /(n+1)$.
46. Use Taylor expansion of $\arctan (x)$ to find $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots$.
47. Prove the following Tauberian Theorem: Suppose $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for $|x|<1$ and $\lim _{x \rightarrow 1} f(x)=s$. If $n a_{n} \rightarrow 0$ as $n \rightarrow \infty$, then $\sum_{n=0}^{\infty} a_{n}$ converges and is equal to s.
48. Show that $E(x) \geq 1+x$ for all $x \in \mathbb{R}$.
49. Work on problems 4,5 , and 6 of Chapter 8 in the textbook.
