1. Use the geometric method to find the general solution of $x u_{x}+u_{y}+\left(1+z^{2}\right) u_{z}=x+y$.
2. Transform $u_{x x}-3 u_{x t}+u_{t t}+2 u=0$ into standard form and determine the type of the equation.
3. Solve $u_{x x}-u_{x t}-2 u_{t t}=0, u(x, 0)=x^{2}, u_{t}(x, 0)=0$ by "factoring the operator".
4. Solve (a) $u_{t t}=c^{2} u_{x x}, u(x, 0)=\tanh x, u_{t}(x, 0)=0$ and (b) $u_{t}=k u_{x x}, u(x, 0)=\mathrm{e}^{x}$. Sketch the solutions at some times and describe the effect of the parameters.
5. If p and r are positive functions, prove that eigenfunctions to different eigenvalues of the problem

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[p(x) f^{\prime}(x)\right]+q(x) f(x)+\lambda r(x) f(x)=0, \quad f(0)=f(1)=0
$$

are orthogonal, using the scalar product $\left(f_{1}, f_{2}\right)=\int_{0}^{1} r(x) f_{1}(x) f_{2}(x) \mathrm{d} x$.
6. By finding an appropriate Fourier series, determine the solution of

$$
9 u_{t t}=u_{x x}, \quad u(0, t)=u(\pi, t)=0, \quad u(x, 0)=0, \quad u_{t}(x, 0)=x(x-\pi) .
$$

7. Perform separation of variables to find the solution of the discrete problem

$$
u(m+2, n)-4 u(m+1, n)-u(m, n+1)=0, \quad u(0,1)=0, \quad u(1,0)=12, \quad u(1,1)=60
$$

8. Use centered differences to approximate the harmonic function in $S=\{(x, y): 0<x<1,0<y<1\}$ that satisfies $u(x, 0)=54 x^{2}(1-x)$ for $0 \leq x \leq 1$ and vanishes at all other points of the boundary of S (use step size $\frac{1}{3}$ for both x and y).
