64. Consider the series $\sum_{n=0}^{\infty} (-1)^n x^{2n}$.

- (a) For which $x \in \mathbb{R}$ does the series converge pointwise?
- (b) Does the series converge uniformly on [-1, 1]?
- (c) Does the series converge in the L^2 sense on [-1, 1]?

65. Let $\phi(x) = -1 - x$ if $x \in [-1, 0)$ and $\phi(x) = 1 - x$ if $x \in (0, 1]$ and $\phi(0) = 0$.

- (a) Find the full Fourier series of ϕ in the interval (-1, 1).
- (b) Graph the first five partial sums of the Fourier series (use a computer if you like).
- (c) Does the Fourier series converge in the mean square sense?
- (d) Does the Fourier series converge pointwise?
- (e) Does the Fourier series converge uniformly?
- 66. Let f be 2π -periodic on \mathbb{R} and assume $\int_{-\pi}^{\pi} |f(x)|^2 dx < \infty$. Show that both $\int_{-\pi}^{\pi} f(x) \cos(nx) dx$ and $\int_{-\pi}^{\pi} f(x) \sin(nx) dx$ converge to zero as n tends to infinity.
- 67. Find $\sum_{k=1}^{n} \sin(k\theta)$.
- 68. For |a| < 1, find
 - (a) $\sum_{n=0}^{\infty} a^n \cos(n\theta);$ (b) $\sum_{n=1}^{\infty} a^n \sin(n\theta).$
- 69. Let $e_n(x) = \frac{1}{\sqrt{2\pi}} e^{inx}$, where $x \in (-\pi, \pi)$. Let f be continuous and 2π -periodic on \mathbb{R} . Define $f_m = \sum_{n=-m}^m (f, e_n) e_n$ and $F_m = \frac{1}{m+1} \sum_{k=0}^m f_k$.
 - (a) Establish the formula $F_m(y) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) K_m(y-x) dx$, where $K_m(\theta) = \frac{1}{m+1} \sum_{k=0}^{m} \sum_{n=-k}^{k} e^{in\theta}$ is the so-called Fejér kernel.
 - (b) Show that $K_m(\theta) = \frac{1}{m+1} \frac{\sin^2 \frac{(m+1)\theta}{2}}{\sin^2 \frac{\theta}{2}}$ if $\theta \neq 2\pi n$ for some $n \in \mathbb{Z}$.
 - (c) Establish the formula $F_m(y) f(y) = \frac{1}{2\pi} \int_{y-\pi}^{y+\pi} [f(x) f(y)] K_m(y-x) dx.$
 - (d) Draw the graph of K_m (use a computer if you like) for $m \in \{2, 5, 8\}$.
- 70. Consider the problem $u_t = k u_{xx}$, 0 < x < l, $u(x, 0) = \phi(x)$ with the boundary conditions $u_x(0,t) = u_x(l,t) = \frac{u(l,t) u(0,t)}{l}$.
 - (a) Assume that there are no negative eigenvalues and solve the problem.
 - (b) Assume that limits can be taken term by term and find A, B with $\lim_{t\to\infty} u(x,t) = A + Bx$.