- 6. Consider the PDE $u_x + u_t = u$.
 - (a) Apply the geometric method to obtain an idea how the general solution looks like.
 - (b) Find the general solution.
 - (c) Find the solution u with u(0, t) = 0.
 - (d) Find the solution u with $u(0,t) = e^t$.
 - (e) Find the solution u with u(0,t) = g(t), where g is an arbitrary differentiable function.
 - (f) Find the solution u with u(x, 0) = g(x), where g is an arbitrary differentiable function.
- 7. Consider the PDE $u_x + u_t = u + e^{x-t}$.
 - (a) Apply the geometric method to obtain an idea how the general solution looks like.
 - (b) Find the general solution.
 - (c) Find the solution u with u(x,0) = g(x), where g is an arbitrary differentiable function.
 - (d) Find the solution u with u(x, 1) = g(x), where g is an arbitrary differentiable function.
- 8. Find the solution of $u_x + u_t + u = e^{x+2t}$ that satisfies u(x, 0) = 0.
- 9. Find the solution of $2u_x + 3u_t = 4u + x$ that satisfies $u(x, 0) = 9x^2$.
- 10. Find the general solutions of the following equations. Where are they defined?
 - (a) $xu_x + tu_t = 0;$
 - (b) $xu_x + tu_t = t.;$
 - (c) $xu_x + tu_t = t^2 + x^3;$

(d)
$$(1+x^2)u_x + u_t = 0.$$

- 11. Find the solution of $\sqrt{1-x^2}u_x + u_t = 0$ that satisfies u(0,t) = t.
- 12. Find the solution of $tu_x + xu_t = 0$ that satisfies $u(0,t) = e^{-t^2}$.