34. If f and g are two functions of a real variable, then we define the convolution of f and g by $(f * g)(x)=\int_{\mathbb{R}} f(x-y) g(y) \mathrm{d} y$ provided the infinite integral exists. Show the following (provided the occuring integrals exist):
(a) $f * g=g * f$;
(b) $(f * g) * h=f *(g * h)$;
(c) $(f * g)^{\prime}=f * g^{\prime}=f^{\prime} * g$;
(d) Find $\lim _{\varepsilon \rightarrow 0^{+}}\left(\varphi_{\varepsilon} * f\right)$ where f is given by
i. $f(x)=x$;
ii. $f(x)=\mathrm{e}^{x}$
and φ_{ε} is given by $\varphi_{\varepsilon}(x)=\frac{1}{\varepsilon} \varphi\left(\frac{x}{\varepsilon}\right)$ with $\int_{\mathbb{R}} \varphi(x) \mathrm{d} x=1$ and such that
i. φ is a symmetric (with respect to the y-axis) nonnegative "triangle";
ii. φ is a constant times $\mathrm{e}^{-x^{2}}$
(i.e., combine each of the f with each of the φ and hence solve four similar problems).
35. Solve the diffusion equation with the initial condition
(a) $\phi(x)=\alpha$ for all $x \in \mathbb{R}$ (where $\alpha \in \mathbb{R}$);
(b) $\phi(x)=1$ if $|x|<l$ and zero otherwise (where $l>0$);
(c) $\phi(x)=1$ for positive x and $\phi(x)=3$ for negative x;
(d) $\phi(x)=\mathrm{e}^{-x}$ for positive x and $\phi(x)=0$ for negative x.
36. Let u be a solution of the diffusion equation together with $u(x, 0)=\phi(x)$. Prove:
(a) If ϕ is odd, then u is odd;
(b) If ϕ is even, then u is even.
37. Solve the IVP $u_{t}-k u_{x x}+b u=0, u(x, 0)=\phi(x)$ (where $b>0$) by performing a change of variables $u(x, t)=\mathrm{e}^{-b t} v(x, t)$.
38. Solve the IVP $u_{t}-k u_{x x}+b t^{2} u=0, u(x, 0)=\phi(x)$ (where $b>0$) by performing a change of variables $u(x, t)=\mathrm{e}^{-b t^{3} / 3} v(x, t)$.
39. Solve the IVP $u_{t}-k u_{x x}+b u_{x}=0, u(x, 0)=\phi(x)$ (where $b>0$) by substituting $y=x-b t$.
40. Read Chapter 3 of the book. Work on at least one problem from each of its sections.
