- 34. If f and g are two functions of a real variable, then we define the convolution of f and g by $(f * g)(x) = \int_{\mathbb{R}} f(x y)g(y)dy$ provided the infinite integral exists. Show the following (provided the occuring integrals exist):
 - (a) f * g = g * f;
 - (b) (f * g) * h = f * (g * h);
 - (c) (f * g)' = f * g' = f' * g;
 - (d) Find $\lim_{\varepsilon \to 0^+} (\varphi_{\varepsilon} * f)$ where f is given by
 - i. f(x) = x;
 - ii. $f(x) = e^x$

and φ_{ε} is given by $\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon}\varphi\left(\frac{x}{\varepsilon}\right)$ with $\int_{I\!\!R}\varphi(x)dx = 1$ and such that

- i. φ is a symmetric (with respect to the y-axis) nonnegative "triangle";
- ii. φ is a constant times e^{-x^2}

(i.e., combine each of the f with each of the φ and hence solve four similar problems).

- 35. Solve the diffusion equation with the initial condition
 - (a) $\phi(x) = \alpha$ for all $x \in \mathbb{R}$ (where $\alpha \in \mathbb{R}$);
 - (b) $\phi(x) = 1$ if |x| < l and zero otherwise (where l > 0);
 - (c) $\phi(x) = 1$ for positive x and $\phi(x) = 3$ for negative x;
 - (d) $\phi(x) = e^{-x}$ for positive x and $\phi(x) = 0$ for negative x.
- 36. Let u be a solution of the diffusion equation together with $u(x,0) = \phi(x)$. Prove:
 - (a) If ϕ is odd, then u is odd;
 - (b) If ϕ is even, then u is even.
- 37. Solve the IVP $u_t ku_{xx} + bu = 0$, $u(x, 0) = \phi(x)$ (where b > 0) by performing a change of variables $u(x, t) = e^{-bt}v(x, t)$.
- 38. Solve the IVP $u_t ku_{xx} + bt^2u = 0$, $u(x, 0) = \phi(x)$ (where b > 0) by performing a change of variables $u(x, t) = e^{-bt^3/3}v(x, t)$.
- 39. Solve the IVP $u_t ku_{xx} + bu_x = 0$, $u(x, 0) = \phi(x)$ (where b > 0) by substituting y = x bt.
- 40. Read Chapter 3 of the book. Work on at least one problem from each of its sections.