41. Find the solution of the wave equation with Dirichlet conditions (see Theorem 4.1) and
(a) $\phi(x)=3 \sin \frac{\pi x}{l}, \psi(x)=0$;
(b) $\phi(x)=3 \sin \frac{\pi x}{l}-2 \sin \frac{3 \pi x}{l}, \psi(x)=4 \sin \frac{\pi x}{l}+2 \sin \frac{4 \pi x}{l}$.
42. Find the solution of the diffusion equation with Dirichlet conditions (see Theorem 4.2) and
(a) $\phi(x)=3 \sin \frac{\pi x}{l}$;
(b) $\phi(x)=3 \sin \frac{\pi x}{l}-2 \sin \frac{3 \pi x}{l}$.
43. Consider a metal rod $(0<x<l)$, insulated along its sides but not at its ends, which is initially at temperature one everywhere. Suddenly both ends are plunged into a bath of temperature zero. Write the differential equation, boundary conditions, and initial conditions. Write the formula for the temperature $u(x, t)$ at later times. In this problem, you can use the infinite series expansion $\sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin \frac{(2 n-1) \pi x}{l}=\frac{\pi}{4}$.
44. Find all eigenvalues and eigenfunctions of $f^{\prime \prime}+\lambda f=0, f(0)=f(\pi)=0$. How many zeros inside the interval $(0, \pi)$ does the nth eigenfunction of the problem have?
45. Find all eigenvalues and eigenfunctions of $f^{\prime \prime}+\lambda f=0, f(-\pi)=f(\pi), f^{\prime}(-\pi)=f^{\prime}(\pi)$. Also show that the eigenfunctions are orthogonal in the sense that $\int_{-\pi}^{\pi} e_{1}(x) e_{2}(x) \mathrm{d} x=0$ whenever e_{1} and e_{2} are eigenfunctions corresponding to two different eigenvalues.
46. Consider the second order difference equation $\Delta^{2} f_{k}+\lambda f_{k+1}=0$ (where the forward difference operator Δ is defined by $\Delta f_{k}=f_{k+1}-f_{k}$). Determine the values of λ (and of θ) for which $f_{k}=\cos (k \theta), f_{k}=\sin (k \theta), f_{k}=\cosh (k \theta)$, and $f_{k}=\sinh (k \theta)$ solve the equation and hence find the general solution. Then find the eigenvalues and eigenfunctions of $\Delta^{2} f_{k}+\lambda f_{k+1}=0, f_{0}=f_{N}=0$, where $N \in \mathbb{N}$. How many eigenvalues does this problem have?
47. Separate the variables for the equation $t u_{t}=u_{x x}+2 u$ with $u(0, t)=u(\pi, t)=0$. Show that the solution of this problem satisfying in addition $u(x, 0)=0$ is not unique.
48. Use the method of separation of variables to find solutions (as many as possible) of the following problems:
(a) $u_{x x}+u_{t t}=0(0<x<a, t>0), u(0, t)=u(a, t)=0$;
(b) $u_{x x}+u_{t t}=0(0<x<a, t>0), u_{x}(0, t)=u_{x}(a, t)=0$;
(c) $u_{t t}+a^{2} u_{x x x x}=0(0<x<l, t>0), u(0, t)=u(l, t)=u_{x x}(0, t)=u_{x x}(l, t)=0$.
