- 58. Show that the Dirichlet, Neumann, Robin, and periodic boundary conditions are symmetric. For which conditions on $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ are the conditions $f(b) = \alpha f(a) + \beta f'(a)$, $f'(b) = \gamma f(a) + \delta f'(a)$ symmetric?
- 59. Consider an eigenvalue problem $f'' + \lambda f = 0$ with symmetric boundary conditions.
 - (a) Show that if $f(b)f'(b) f(a)f'(a) \le 0$ for all $f:[a,b] \to \mathbb{R}$ satisfying the boundary conditions, then there is no negative eigenvalue.
 - (b) Show that the condition in (a) is satisfied for Dirichlet, Neumann, and periodic boundary conditions. In which cases is it satisfied for Robin conditions?
- 60. Let V be a complex vector space. An inner product on V is a mapping $(\cdot, \cdot): V \times V \to \mathbb{C}$ such that for all $x, y, z \in V$ and all $\lambda \in \mathbb{C}$: $(x, y) = \overline{(y, x)}, (\lambda x, y) = \lambda(x, y), (x + y, z) = (x, z) + (y, z), \text{ and } (x, x) > 0 \text{ if } x \neq 0.$
 - (a) Prove (x, y + z) = (x, y) + (x, z) and $(x, \lambda y) = \overline{\lambda}(x, y)$.
 - (b) Prove $||x|| \ge 0$ and ||x|| = 0 iff x = 0 and $||\lambda x|| = |\lambda| ||x||$.
 - (c) Show that $(x,y) = x^T \overline{y}$ is an inner product on \mathbb{C}^n .
 - (d) Show that $(f,g) = \int_a^b f(x)\overline{g(x)} dx$ is an inner product on the vector space of all continuous complex-valued functions on [a,b].
- 61. Let V be a real vector space with inner product (\cdot, \cdot) . We call $x, y \in V$ orthogonal (write $x \perp y$) if (x, y) = 0. Also, we put $||x|| = \sqrt{(x, x)}$. Prove the following statements. Also draw a picture for the case $V = \mathbb{R}^2$.
 - (a) $(x y) \perp (x + y)$ iff ||x|| = ||y||.
 - (b) $(x-z) \perp (y-z)$ iff $||x-z||^2 + ||y-z||^2 = ||x-y||^2$.
 - (c) $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$.
 - (d) $|(x,y)| \le ||x|| ||y||$.
 - (e) $||x + y|| \le ||x|| + ||y||$.
- 62. Let V be a real vector space with inner product (\cdot,\cdot) . Let $\{e_i: i \in \mathbb{N}\} \subset V$ be orthonormal, i.e., (e_i,e_j) is zero if $i \neq j$ and is one if i = j. Let $n \in \mathbb{N}, x \in V$, and $\lambda_i \in \mathbb{R}$ for $i \in \mathbb{N}$. Prove the following:
 - (a) $\left\| \sum_{i=1}^{n} \lambda_i e_i \right\|^2 = \sum_{i=1}^{n} |\lambda_i|^2;$
 - (b) $\left\|x \sum_{i=1}^{n} \lambda_i e_i\right\|^2 = \left\|x\right\|^2 + \sum_{i=1}^{n} |\lambda_i c_i|^2 \sum_{i=1}^{n} |c_i|^2$ with $c_i = (x, e_i)$;
 - (c) $\lim_{n\to\infty} \sum_{i=1}^{n} |(x, e_i)|^2$ exists and is less than or equal to $||x||^2$.
- 63. For this problem, use the inner products defined earlier for the various cases, respectively.
 - (a) Find a set of three orthonormal vectors in \mathbb{R}^3 .
 - (b) Find α such that $e_n(t) = \alpha e^{int}$, $n \in \mathbb{Z}$ are orthonormal on $[-\pi, \pi]$.
 - (c) For the set of real-valued polynomials on [-1,1], show that p(x) = x is orthogonal to every constant function. Next, find a quadratic polynomial that is orthogonal to both p and the constant functions. Finally, find a cubic polynomial that is orthogonal to all quadratic polynomials. Hence construct an orthonormal set with three vectors.