- 10. Show that the PDE $(u_x)^2 + (u_t)^2 = 0$ is not linear. Find its general solution.
- 11. Consider $au_x + bu_t = 0$. Use the geometric method twice to find the general solution (one time by eliminating the first component in u and a second time by eliminating the second component). Show that both representations of the general solution are the same.
- 12. Find the solution of $u_x u_t + 2u = 1$ that satisfies $u(x, 0) = x^2$.
- 13. Consider the PDE $u_x + u_t = u + e^{x-t}$.
 - (a) Apply the geometric method to obtain an idea how the general solution looks like.
 - (b) Find the general solution.
 - (c) Find the solution u with u(x,0) = g(x), where g is an arbitrary differentiable function.
 - (d) Find the solution u with u(x, 1) = g(x), where g is an arbitrary differentiable function.
- 14. Find the solution of $u_x + u_t + u = e^{x+2t}$ that satisfies u(x, 0) = 0.
- 15. Find the solution of $2u_x + 3u_t = 4u + x$ that satisfies $u(x, 0) = 9x^2$.
- 16. Consider the problem $u_x + 3u_t u = 1$, u(x, 3x) = g(x).
 - (a) For which functions g does this problem have a solution?
 - (b) Find two different solutions of the problem if $g(x) = 2e^x 1$.
- 17. Find the general solutions of the following equations. Where are they defined? Sketch some of the characteristic curves.
 - (a) $xu_x + tu_t = 0;$
 - (b) $xu_x + tu_t = t;$
 - (c) $xu_x + tu_t = t^2 + x^3;$
 - (d) $(1+x^2)u_x + u_t = 0.$
- 18. Find the solution of $\sqrt{1-x^2}u_x + u_t = 0$ that satisfies u(0,t) = t.
- 19. Find the solution of $tu_x + xu_t = 0$ that satisfies $u(0,t) = e^{-t^2}$.
- 20. Consider the equation $xu_t = tu_x$.
 - (a) Find the general solution.
 - (b) Find the solution that satisfies u(x, 0) = 3x.
- 21. Find the solution of $(t+x)u_x + (t-x)u_t = 0$ that satisfies $u(\cos(s), \sin(s)) = 1$ for all $s \in [0, 2\pi]$.
- 22. Find the solution of $4xu_x + 2tu_t = xt$ that satisfies $u(x, 1) = \phi(x)$ for some given function ϕ .
- 23. Find the general solution of $xu_x + u_y + (1 + z^2)u_z = x + y$.