10. Show that the $\operatorname{PDE}\left(u_{x}\right)^{2}+\left(u_{t}\right)^{2}=0$ is not linear. Find its general solution.
11. Consider $a u_{x}+b u_{t}=0$. Use the geometric method twice to find the general solution (one time by eliminating the first component in u and a second time by eliminating the second component). Show that both representations of the general solution are the same.
12. Find the solution of $u_{x}-u_{t}+2 u=1$ that satisfies $u(x, 0)=x^{2}$.
13. Consider the PDE $u_{x}+u_{t}=u+e^{x-t}$.
(a) Apply the geometric method to obtain an idea how the general solution looks like.
(b) Find the general solution.
(c) Find the solution u with $u(x, 0)=g(x)$, where g is an arbitrary differentiable function.
(d) Find the solution u with $u(x, 1)=g(x)$, where g is an arbitrary differentiable function.
14. Find the solution of $u_{x}+u_{t}+u=e^{x+2 t}$ that satisfies $u(x, 0)=0$.
15. Find the solution of $2 u_{x}+3 u_{t}=4 u+x$ that satisfies $u(x, 0)=9 x^{2}$.
16. Consider the problem $u_{x}+3 u_{t}-u=1, u(x, 3 x)=g(x)$.
(a) For which functions g does this problem have a solution?
(b) Find two different solutions of the problem if $g(x)=2 \mathrm{e}^{x}-1$.
17. Find the general solutions of the following equations. Where are they defined? Sketch some of the characteristic curves.
(a) $x u_{x}+t u_{t}=0$;
(b) $x u_{x}+t u_{t}=t$;
(c) $x u_{x}+t u_{t}=t^{2}+x^{3}$;
(d) $\left(1+x^{2}\right) u_{x}+u_{t}=0$.
18. Find the solution of $\sqrt{1-x^{2}} u_{x}+u_{t}=0$ that satisfies $u(0, t)=t$.
19. Find the solution of $t u_{x}+x u_{t}=0$ that satisfies $u(0, t)=e^{-t^{2}}$.
20. Consider the equation $x u_{t}=t u_{x}$.
(a) Find the general solution.
(b) Find the solution that satisfies $u(x, 0)=3 x$.
21. Find the solution of $(t+x) u_{x}+(t-x) u_{t}=0$ that satisfies $u(\cos (s), \sin (s))=1$ for all $s \in[0,2 \pi]$.
22. Find the solution of $4 x u_{x}+2 t u_{t}=x t$ that satisfies $u(x, 1)=\phi(x)$ for some given function ϕ.
23. Find the general solution of $x u_{x}+u_{y}+\left(1+z^{2}\right) u_{z}=x+y$.
