31. Let \(u \) be a solution of the wave equation \(u_{tt} = c^2 u_{xx} \). Show the following:

(a) Let \(y \in \mathbb{R} \). Then \(v \) with \(v(x,t) = u(x-y,t) \) solves the wave equation.

(b) \(u_x, u_t, \) and \(u_{xx} \) solve the wave equation (provided \(u \) is often enough differentiable).

(c) Let \(a \in \mathbb{R} \). Then \(v \) with \(v(x,t) = u(ax,at) \) solves the wave equation.

32. Solve the wave equation \(u_{tt} = c^2 u_{xx} \), together with the initial conditions

(a) \(u(x,0) = e^x \) and \(u_t(x,0) = \sin x \);

(b) \(u(x,0) = \log(1 + x^2) \) and \(u_t(x,0) = 4 + x \);

(c) \(u(x,0) = \tanh x \) and \(u_t(x,0) = 0 \).

33. If both \(\phi \) and \(\psi \) are even functions of \(x \), show that the solution of the initial value problem given in Theorem 2.2 is also even in \(x \) for all times \(t \).

34. Use a method similar to the methods from Theorem 2.1 and Theorem 2.2 (i.e., “factor” the operator) to find the solutions to the following initial value problems:

(a) \(u_{xx} - 3u_{xt} - 4u_{tt} = 0 \), \(u(x,0) = x^2 \), \(u_t(x,0) = e^x \);

(b) \(u_{xx} + 2u_{xt} - 3u_{tt} = 0 \), \(u(x,0) = \sin x \), \(u_t(x,0) = x \);

(c) \(u_{xx} - u_{xt} - 2u_{tt} = 0 \), \(u(x,0) = x^2 \), \(u_t(x,0) = x \).

35. Find the general solution of the so-called spherical wave equation \(u_{tt} = c^2 \left(u_{rr} + \frac{2}{r} u_r \right) \) by changing variables \(v = ur \). Also, find the solution of the spherical wave equation that satisfies \(u(r,0) = \phi(r) \) and \(u_t(r,0) = \psi(r) \), where \(\phi \) and \(\psi \) are differentiable.

36. Let \(h : \mathbb{R} \to \mathbb{R} \) be a strictly decreasing function. Determine the solution of the so-called Goursat problem, namely of \(u_{tt} = c^2 u_{xx} \), \(u(x, \frac{2}{c}) = \phi(x) \), \(u(x, h(x)) = \psi(x) \).

37. Suppose \(u \) solves the equation (with a given function \(h \) and \(c > 0 \)) \(u_{tt} + 2cu_{xt} + c^2 u_{xx} = h(x - ct) \).

Introduce \(v = u_t + cu_x \) and calculate \(v_t + cv_x \) to obtain a PDE of first order for \(v \). Solve this PDE using the geometric method. Thus obtain a PDE of first order for \(u \). Solve this PDE using the geometric method. Finally, solve the problem \(u_{tt} + 2cu_{xt} + c^2 u_{xx} = h(x - ct) \), \(u(x,0) = \phi(x) \), \(u_t(x,0) = \psi(x) \).

38. Prove that the total energy for the wave equation \(E(t) = \frac{1}{2} \int_0^l \left\{ \frac{1}{c^2} u_t^2(x,t) + u_x^2(x,t) \right\} dx \) is conserved when having Neumann boundary conditions.

39. Find the general solution of the nonhomogeneous wave equation \(u_{tt} - c^2 u_{xx} = h(x,t) \). Then, determine the solution of this equation that satisfies the initial conditions \(u(x,0) = \phi(x) \) and \(u_t(x,0) = \psi(x) \).