- 40. Let u be a solution of the diffusion equation $u_t = ku_{xx}$. Show the following:
 - (a) Let $y \in \mathbb{R}$. Then v with v(x,t) = u(x-y,t) solves the diffusion equation.
 - (b) u_x , u_t , and u_{xx} solve the diffusion equation (provided u is often enough differentiable).
 - (c) Let a > 0. Then v with $v(x,t) = u(x\sqrt{a},at)$ solves the diffusion equation.
- 41. Let $u(x,t) = 1 x^2 2kt$. Show that u solves the diffusion equation and find the locations of its extreme values in $\{(x,t): 0 \le x \le 1, 0 \le t \le T\}$.
- 42. Let $u(x,t) = -2xt x^2$. Show that u solves the equation $u_t = xu_{xx}$ and find the locations of its extreme values in $\{(x,t): -2 \le x \le 2, 0 \le t \le 1\}$. Where exactly does the proof of the maximum principle from Theorem 2.3 break down?
- 43. Use the energy method (as is done in the book on page 43) to show that there is at most one solution of the Dirichlet problem for the diffusion equation.
- 44. For this problem you may use without proving it that $\int_{-\infty}^{\infty} e^{-u^2} du = \sqrt{\pi}$ holds. We let $\mu, \sigma \in \mathbb{R}$ with $\sigma > 0$ and put $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.
 - (a) Calculate the maximum and the two inflection points of f.
 - (b) Evaluate $\int_{-\infty}^{\infty} f(x) dx$.
 - (c) Evaluate $\int_{-\infty}^{\infty} x f(x) dx$ and denote the result by E.
 - (d) Evaluate $\int_{-\infty}^{\infty} (x E)^2 f(x) dx$.
- 45. Solve the diffusion equation with the initial condition
 - (a) $\phi(x) = \alpha$ for all $x \in \mathbb{R}$ (where $\alpha \in \mathbb{R}$);
 - (b) $\phi(x) = 1$ if |x| < l and zero otherwise (where l > 0);
 - (c) $\phi(x) = 1$ for positive x and $\phi(x) = 3$ for negative x;
 - (d) $\phi(x) = e^{-x}$ for positive x and $\phi(x) = 0$ for negative x.