46. Let $u$ be a solution of the diffusion equation together with $u(x, 0)=\phi(x)$. Prove:
(a) If $\phi$ is odd, then $u$ is odd;
(b) If $\phi$ is even, then $u$ is even.
47. Solve the IVP $u_{t}-k u_{x x}+b u=0, u(x, 0)=\phi(x)$ (where $b>0$ ) by performing a change of variables $u(x, t)=\mathrm{e}^{-b t} v(x, t)$.
48. Solve the IVP $u_{t}-k u_{x x}+b t^{2} u=0, u(x, 0)=\phi(x)$ (where $b>0$ ) by performing a change of variables $u(x, t)=\mathrm{e}^{-b t^{3} / 3} v(x, t)$.
49. Solve the IVP $u_{t}-k u_{x x}+b u_{x}=0, u(x, 0)=\phi(x)$ (where $b>0$ ) by substituting $y=x-b t$.
50. Read Chapter 3 of the book. Work on at least one problem from each of its sections.
51. Find the solution of the wave equation with Dirichlet conditions (see Theorem 4.1) and
(a) $\phi(x)=3 \sin \frac{\pi x}{l}, \psi(x)=0$;
(b) $\phi(x)=3 \sin \frac{\pi x}{l}-2 \sin \frac{3 \pi x}{l}, \psi(x)=4 \sin \frac{\pi x}{l}+2 \sin \frac{4 \pi x}{l}$.
52. Find the solution of the diffusion equation with Dirichlet conditions (see Theorem 4.2) and
(a) $\phi(x)=3 \sin \frac{\pi x}{l}$;
(b) $\phi(x)=3 \sin \frac{\pi x}{l}-2 \sin \frac{3 \pi x}{l}$.
53. Consider a metal rod $(0<x<l)$, insulated along its sides but not at its ends, which is initially at temperature one everywhere. Suddenly both ends are plunged into a bath of temperature zero. Write the differential equation, boundary conditions, and initial conditions. Write the formula for the temperature $u(x, t)$ at later times. In this problem, you can use the infinite series expansion $\sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin \frac{(2 n-1) \pi x}{l}=\frac{\pi}{4}$.
54. Find all eigenvalues and eigenfunctions of $f^{\prime \prime}+\lambda f=0, f(0)=f(\pi)=0$. How many zeros inside the interval $(0, \pi)$ does the $n$th eigenfunction of the problem have?
55. Find all eigenvalues and eigenfunctions of $f^{\prime \prime}+\lambda f=0, f(-\pi)=f(\pi), f^{\prime}(-\pi)=f^{\prime}(\pi)$. Also show that the eigenfunctions are orthogonal in the sense that $\int_{-\pi}^{\pi} e_{1}(x) e_{2}(x) \mathrm{d} x=0$ whenever $e_{1}$ and $e_{2}$ are eigenfunctions corresponding to two different eigenvalues.
