Functional Analysis

Lecture Notes

Martin Bohner

Version from December 3, 1999

Author address:

Department of Mathematics, University of Missouri–Rolla, Rolla, Missouri 65409-0020

 $E ext{-}mail\ address: bohner@umr.edu}$

Contents

Chapte	r 1. Banach Spaces	1
1.1.	Normed Linear Spaces	1
1.2.	L^p and Hardy Spaces	3
1.3.	Linear Operators	5
Chapte	r 2. The Basic Principles	7
2.1.	The Hahn–Banach Theorem	7
2.2.	The Uniform Boundedness Principle	8
2.3.	The Open Mapping and Closed Graph Theorems	9
Chapte	r 3. Hilbert Spaces	11
3.1.	Inner Product Spaces	11
3.2.	Adjoint Operators	12
3.3.	The Spectral Theorem	13

CHAPTER 1

Banach Spaces

1.1. Normed Linear Spaces

DEFINITION 1.1. If \mathcal{X} is a vector space over \mathbb{F} , a norm is a function $\|\cdot\|:\mathcal{X}\to[0,\infty)$ having the properties:

- (a) x = 0 if ||x|| = 0;
- (b) $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{F}$ and $x \in \mathcal{X}$;
- (c) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathcal{X}$.

A normed linear space (or short: normed space) is a pair $(\mathcal{X}, \|\cdot\|)$, where \mathcal{X} is a vector space and $\|\cdot\|$ is a norm on \mathcal{X} .

Lemma 1.2. If X is a normed space, then

- (a) ||-x|| = ||x|| for all $x \in \mathcal{X}$;
- (b) $|||x|| ||y||| \le ||x y||$ for all $x, y \in \mathcal{X}$.

EXAMPLE 1.3. (a) C[a, b] with $||x|| = ||x||_{\infty} = \max_{t \in [a, b]} |x(t)|$;

- (b) $C^{1}[a, b]$ with $||x|| = \max_{t \in [a, b]} |x(t)| + \max_{t \in [a, b]} |\dot{x}(t)|$;
- (c) C[a, b] with $||x|| = \int_a^b |x(t)| dt$; (d) BV[a, b] with $||x|| = |x(a)| + V_a^b(x)$.

DEFINITION 1.4. A metric on a set X is a function $d: X \times X \to \mathbb{R}$ that satisfies for all $x, y, z \in X$ all of the following:

- (a) $d(x, y) \ge 0$ and d(x, y) = 0 iff x = y;
- (b) d(x, y) = d(y, x);
- (c) $d(x, y) \le d(x, z) + d(z, y)$.

The pair (X, d) is then called a metric space.

EXAMPLE 1.5. The following are all metrics in \mathbb{R}^2 :

- (a) euclidean metric;
- (b) American city metric;
- (c) French railroad metric.

LEMMA 1.6. If $(\mathcal{X}, \|\cdot\|)$ is a normed space, then (\mathcal{X}, d) with d defined by d(x, y) = ||x - y|| is a metric space.

DEFINITION 1.7. Let (X, d) be a metric space. The sequence $\{x_n\}$ converges to x provided $d(x_n, x) \to 0$ as $n \to \infty$. We write $x_n \to x$.

LEMMA 1.8. Let $\{x_n\}$ be a sequence in a normed space $(X, \|\cdot\|)$.

- (a) If $x_n \to x$, then $||x_n|| \to ||x||$ as $n \to \infty$;
- (b) If $\{x_n\}$ converges, then the limit is unique.

DEFINITION 1.9. Let $(\mathcal{X}, \|\cdot\|_{\mathcal{X}})$ and $(\mathcal{Y}, \|\cdot\|_{\mathcal{Y}})$ be normed spaces. A mapping $T: \mathcal{X} \to \mathcal{Y}$ is called *continuous* at $x_0 \in \mathcal{X}$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $\|x - x_0\|_{\mathcal{X}} < \delta$ implies $\|T(x) - T(x_0)\|_{\mathcal{Y}} < \varepsilon$.

LEMMA 1.10. A mapping T from a normed space \mathcal{X} into a normed space \mathcal{Y} is continuous at $x_0 \in \mathcal{X}$ if and only if $x_n \to x_0$ implies $T(x_n) \to T(x_0)$ as $n \to \infty$.

DEFINITION 1.11. Let (X, d) be a metric space. The sequence $\{x_n\}$ is said to be Cauchy provided $d(x_n, x_m) \to 0$ as $n, m \to \infty$.

Lemma 1.12. Consider a normed space.

- (a) Every convergent sequence is Cauchy.
- (b) Every Cauchy sequence is bounded.

DEFINITION 1.13. A metric space is called *complete* if every Cauchy sequence in it has a limit in it. A complete normed linear space is called a *Banach space*.

EXAMPLE 1.14. (a) $(\mathbb{R}, |\cdot|)$ is a Banach space.

(b) Consider C[0,1] with $||x|| = \int_0^1 |x(t)| dt$. The sequence $\{x_n\}$ in C[0,1] defined by

$$x_n(t) = \begin{cases} 0 & \text{for } 0 \le t \le \frac{1}{2} - \frac{1}{n} \\ nt - \frac{n}{2} + 1 & \text{for } \frac{1}{2} - \frac{1}{n} \le t \le \frac{1}{2} \\ 1 & \text{for } t \ge \frac{1}{2} \end{cases}$$

is Cauchy because of $||x_n - x_m|| = \frac{1}{2} |\frac{1}{n} - \frac{1}{m}|$, but it is not convergent.

(c) Let $l_0 = \{x = \{\xi_n\} : \text{ there exists } N \text{ with } \xi_n = 0 \text{ for all } n \geq N\},$ and define a norm by $||x|| = \max_{n \in \mathbb{N}} |\xi_n|$. Define a sequence $\{x_n\}$ in l_0 by

$$x_n = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, 0, \dots\right\}.$$

The sequence is Cauchy because of $||x_n - x_m|| = \max\{\frac{1}{n+1}, \frac{1}{m+1}\}$, but it is not convergent.

(d) $(C[0,1], \|\cdot\|_{\infty})$ is a Banach space.

- (e) For $1 \leq p < \infty$, $(l^p, \|\cdot\|_p)$ is a Banach space, where l^p consists of all sequences $x = (\xi_k)$ with $||x||_p = \left\{ \sum_{k \in \mathbb{N}} |\xi_k|^p \right\}^{\frac{1}{p}} < \infty$. (f) $(l^{\infty}, ||\cdot||_{\infty})$ is a Banach space, where l^{∞} consists of all sequences
- $x = (\xi_k)$ with $||x||_{\infty} = \sup_{k \in \mathbb{N}} |\xi_k| < \infty$.

DEFINITION 1.15. Let (X, d) be a metric space and suppose $P \subset X$.

- (a) The point $p \in P$ is called an *interior point* of P if there is an $\varepsilon > 0$ such that all $x \in X$ with $d(x, p) < \varepsilon$ are elements of P. The collection of all interior points of P is denoted by $\stackrel{\circ}{P}$. P is called open if $P = \stackrel{\circ}{P}$.
- (b) The point $x \in X$ is called a closure point of P if for all $\varepsilon > 0$ there is a point $p \in P$ satisfying $d(x, p) < \varepsilon$. The collection of all closure points of P is denoted by \bar{P} . P is called *closed* if $P = \bar{P}$.

Lemma 1.16. A subset P of a metric space is closed if and only if every convergent sequence with elements in P has its limit in P.

Theorem 1.17. Let B be a Banach space and suppose $X \subset B$. Then X is a Banach space if and only if X is closed.

DEFINITION 1.18. A series $\{\sum_{k=1}^{n} x_k\}$ in a normed space is called *absolutely convergent* provided $\sum_{n\in\mathbb{N}} \|x_n\| < \infty$.

Theorem 1.19. A normed space is complete if and only if every absolutely convergent series in it has a limit in it.

1.2. L^p and Hardy Spaces

Let (X, Ω, μ) be a measure space. Define for 0

$$||f||_p = \left\{ \int_X |f|^p \mathrm{d}\mu \right\}^{\frac{1}{p}}$$

and let $L^p = L^p(X, \mu) = \{f : ||f||_p < \infty\}.$

Lemma 1.20 (Arithmetic-Geometric Mean Inequality). If $a, b \geq 0$ and $0 < \lambda < 1$, then $a^{\lambda}b^{1-\lambda} \le \lambda a + (1-\lambda)b$.

Theorem 1.21 (Hölder and Minkowski). Let $p \ge 1$. Then

- (a) If $f \in L^p$ and $g \in L^q$, where $\frac{1}{p} + \frac{1}{q} = 1$, then $fg \in L^1$ and $\int |fg| \mathrm{d}\mu \le ||f||_p ||g||_q;$
- (b) If $f, g \in L^p$, then $f + g \in L^p$ and $||f + g||_p \le ||f||_p + ||g||_p$.

Remark 1.22. Two numbers $p,q \geq 1$ which satisfy $\frac{1}{p} + \frac{1}{q} = 1$ are called conjugate exponents.

THEOREM 1.23. Suppose $1 \leq p < \infty$. Then $(L^p, \|\cdot\|_p)$ is a Banach space.

Definition 1.24. The essential sup norm is defined by

$$||f||_{\infty} = \inf\{a: \ \mu(\{x: \ |f(x)| > a\}) = 0\}.$$

The space $L^{\infty} = \{f : ||f||_{\infty} < \infty\}$ is the set of all essentially bounded measurable functions.

Example 1.25. (a) Let

$$f(t) = \begin{cases} 1 - t^2 & t \in [-1, 1] \setminus \{0\} \\ 2 & t = 0. \end{cases}$$

Then $||f||_{\infty} = 1$.

(b) Let f be the characteristic function of the set \mathbb{Q} . Then $||f||_{\infty} = 0$.

Remark 1.26. With the notation from Definition 1.24, Theorem 1.23 holds also for $p = \infty$.

To consider another example of a Banach space, let Δ denote the unit disc $\{z \in \mathbb{C} : |z| < 1\}$, and $\partial \Delta = \{z \in \mathbb{C} : |z| = 1\}$. Consider functions $f \in L^p(\partial \Delta)$, for example

$$f(e^{i\theta}) = e^{i\theta}$$
 or $f(e^{i\theta}) = \sum_{k=-n}^{n} a_k e^{ik\theta}$.

The nth Fourier coefficient of f is defined by

$$\hat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) e^{-in\theta} d\theta.$$

[For example, if $f(e^{i\theta}) = e^{i\theta}$, then $\hat{f}(1) = 1$ and $\hat{f}(n) = 0$ for all other n.] The Fourier series associated with f is

$$f \sim \sum_{n \in \mathbb{Z}} \hat{f}(n) e^{in\theta}.$$

DEFINITION 1.27. Let $p \geq 1$. The Hardy Space H^p is defined by

$$H^p = H^p(\partial \Delta) = \left\{ f \in L^p(\partial \Delta) : \hat{f}(-\mathbb{N}) = \{0\} \right\}.$$

Remark 1.28. The Hardy space H^p consists of those functions in $L^p(\partial \Delta)$ whose negative Fourier coefficients all vanish. So the Fourier series for $f \in H^p$ looks as $f \sim \sum_{n=0}^{\infty} \hat{f}(n)e^{in\theta}$. We identify this series with $\sum_{n=0}^{\infty} \hat{f}(n)z^n$ where $z \in \partial \Delta$.

EXAMPLE 1.29. The function f defined by $f(e^{i\theta}) = e^{-i\theta}$ is not an element of H^p since $\hat{f}(-1) = 1$.

Theorem 1.30. Suppose $1 \leq p \leq \infty$. Then $(H^p, \|\cdot\|_p)$ is a Banach space.

1.3. Linear Operators

DEFINITION 1.31. Let X, Y be vector spaces. A mapping $L: X \to Y$ is called a *linear operator* if it satisfies

$$L(\alpha x + y) = \alpha L(x) + L(y)$$
 for all $x, y \in X, \alpha \in \mathbb{F}$.

If $Y = \mathbb{F}$, then a linear operator is called a *linear functional*.

EXAMPLE 1.32. (a) Let $L: c \to \mathbb{R}$ be defined by $L(x) = \lim_{n \to \infty}$, where $x = (\xi_n) \in c$. Then L is linear.

(b) Let A be an $m \times n$ -matrix with real entries. Then $L : \mathbb{R}^m \to \mathbb{R}^n$ defined by L(x) = Ax for all $x \in \mathbb{R}^m$ is a linear operator.

Definition 1.33. Let $(\mathcal{X}, \|\cdot\|_{\mathcal{X}})$ and $(\mathcal{Y}, \|\cdot\|_{\mathcal{Y}})$ be normed linear spaces. Suppose that $L: \mathcal{X} \to \mathcal{Y}$ is a linear operator. Then

$$||L|| = \sup_{x \in \mathcal{X} \setminus \{0\}} \frac{||Lx||_{\mathcal{Y}}}{||x||_{\mathcal{X}}}$$

is called the *norm* of the operator L. L is said to be *bounded* provided $||L|| < \infty$. The collection of all bounded linear operators from \mathcal{X} into \mathcal{Y} is denoted by $\mathcal{B}(\mathcal{X},\mathcal{Y})$. The set $\mathcal{X}^* = \mathcal{B}(\mathcal{X},\mathbb{F})$ is called the *dual space* of \mathcal{X} .

THEOREM 1.34. With the notation from Def. 1.33, $(\mathcal{B}(\mathcal{X}, \mathcal{Y}), \|\cdot\|)$ is a normed linear space.

EXAMPLE 1.35. (a) For $L: c \to \mathbb{R}$ defined by $L(x) = \lim_{n \to \infty} x_n$ for $x = (x_n) \in c$ we have ||L|| = 1.

- (b) For $L: C[0, a] \to C[0, b]$ defined by $(Lx)(s) = s \int_0^a x(t) dt$ for all $x \in C[0, a]$ we have ||L|| = ab.
- (c) Let $\mathcal{X} = \mathcal{Y} = L^1(\mathbb{R}), g \in \mathcal{X}$, and define $L_g : \mathcal{X} \to \mathcal{Y}$ by $(L_g(f))(t) = \int_{-\infty}^{\infty} g(t-s)f(s)\mathrm{d}s$. Then L_g is a linear operator. L_g is bounded because of $\|L_g(f)\|_1 \leq \|f\|_1 \|g\|_1$.
- (d) Let p and q be conjugate exponents. Fix $g \in L^q = L^q(X, \mu)$ and define $L_g : L^p \to \mathbb{C}$ by $L_g(f) = \int_X f g d\mu$. Then L_g is a linear functional. L_g is bounded because of $|L_g(f)| \leq ||f||_p ||g||_q$. In fact, $||L_g|| = ||g||_q$.
- (e) Let P be the set of polynomials (as a subset of $(C[0,1], \|\cdot\|_{\infty})$), and define $D: P \to P$ by D(f) = f'. Then D is a linear operator but not bounded.

THEOREM 1.36. Let \mathcal{X} and \mathcal{Y} be normed linear spaces and $L: \mathcal{X} \to \mathcal{Y}$ be a linear operator. Then the following statements are equivalent:

- (a) L is bounded;
- (b) L is continuous;
- (c) L is continuous at one point.

THEOREM 1.37. Let \mathcal{X} and \mathcal{Y} be normed linear spaces. If \mathcal{Y} is a Banach space, then so is $\mathcal{B}(\mathcal{X}, \mathcal{Y})$.

Corollary 1.38. Let \mathcal{X} be a normed linear space. Then \mathcal{X}^* is a Banach space.

EXAMPLE 1.39 (The Dual of l^1). The space $(l^1)^*$ consists exactly of all functionals f defined by $f(x) = \sum_{n \in \mathbb{N}} c_n x_n$, where $x = \{x_n\} \in l^1$ and $c = \{c_n\} \in l^{\infty}$. Also, this relation implies $||f|| = ||c||_{\infty}$.

Theorem 1.40. Let φ be a linear functional on a normed space. Then φ is continuous if and only if $Ker\varphi$ is closed.

- Theorem 1.41. (a) All finite dimensional subspaces of a normed space are complete (and hence closed);
 - (b) All linear functionals on a finite dimensional normed space are continuous.

CHAPTER 2

The Basic Principles

2.1. The Hahn-Banach Theorem

DEFINITION 2.1. Let X be a nonempty set. A partial ordering on X is a relationship " \leq " so that for all x, y, z each of the following holds:

- (a) $x \leq x$;
- (b) $x \le y$ and $y \le x$ imply x = y;
- (c) $x \le y$ and $y \le z$ imply $x \le z$.

An element $y \in X$ with $y \leq x$ for all $x \in E$ (where $E \subset X$) is called a lower bound of E. An element $y \in X$ that satisfies x = y for all $x \in X$ with $x \leq y$ is called a minimal element of X. A subset E of X is said to be linearly ordered if for each two elements $x, y \in E$ we have either $x \leq y$ or $y \leq x$.

Lemma 2.2 (Zorn's Lemma). Let X be a partially ordered set such that every linearly ordered subset of X has an upper bound in X. Then X has a maximal element.

DEFINITION 2.3. Let \mathcal{X} be a real vector space. A sublinear functional is a mapping $p: \mathcal{X} \to \mathbb{R}$ such that the following holds:

- (a) $p(x+y) \le p(x) + p(y)$ for all $x, y \in \mathcal{X}$;
- (b) $p(\alpha x) = \alpha p(x)$ for all $x \in \mathcal{X}$ and all $\alpha \geq 0$.

THEOREM 2.4 (Hahn-Banach Theorem, Real Version). Let \mathcal{X} be a real vector space, p a sublinear functional on \mathcal{X} , \mathcal{M} a subspace of \mathcal{X} , and f a linear functional on \mathcal{M} such that $f(x) \leq p(x)$ for all $x \in \mathcal{M}$. Then there exists a linear functional F on \mathcal{X} such that $F(x) \leq p(x)$ for all $x \in \mathcal{X}$ and F(x) = f(x) for all $x \in \mathcal{M}$.

DEFINITION 2.5. If \mathcal{X} is a vector space over \mathbb{F} , a seminorm is a function $p: \mathcal{X} \to [0, \infty)$ having the properties:

- (a) $p(x) \ge 0$ for all $x \in \mathcal{X}$;
- (b) $p(\alpha x) = |\alpha| p(x)$ for all $\alpha \in \mathbb{F}$ and $x \in \mathcal{X}$;
- (c) $p(x+y) \le p(x) + p(y)$ for all $x, y \in \mathcal{X}$.

THEOREM 2.6 (Hahn-Banach Theorem). Let \mathcal{X} be a vector space, p a seminorm on \mathcal{X} , \mathcal{M} a subspace of \mathcal{X} , and f a linear functional on \mathcal{M} such that $|f(x)| \leq p(x)$ for all $x \in \mathcal{M}$. Then there exists a linear functional F on \mathcal{X} such that $|F(x)| \leq p(x)$ for all $x \in \mathcal{X}$ and F(x) = f(x) for all $x \in \mathcal{M}$.

THEOREM 2.7 (Hahn-Banach Theorem). Let \mathcal{X} be a normed linear space, \mathcal{M} a subspace of \mathcal{X} , and f a bounded linear functional on \mathcal{M} . Then there exists a bounded linear functional F on \mathcal{X} with ||F|| = ||f|| and F(x) = f(x) for all $x \in \mathcal{M}$.

THEOREM 2.8 (Separation Theorem). Let \mathcal{X} be a normed linear space, \mathcal{M} a subspace of \mathcal{X} , and $z \in \mathcal{X}$ with $\delta = \inf_{x \in \mathcal{M}} ||x-z|| > 0$. Then there exists a bounded linear functional F on \mathcal{X} that satisfies $F(\mathcal{M}) = \{0\}$, $F(z) = \delta$, and ||F|| = 1.

COROLLARY 2.9. Let \mathcal{X} be a normed linear space and $x_0 \in \mathcal{X} \setminus \{0\}$. Then there exists a bounded linear functional F on \mathcal{X} with $F(x_0) = ||x_0||$ and ||F|| = 1.

COROLLARY 2.10. Let \mathcal{X} be a normed linear space. Then \mathcal{X}^* separates points of \mathcal{X} (i.e., for $x, y \in \mathcal{X}$, $x \neq y$, there exists $f \in \mathcal{X}^*$ such that $f(x) \neq f(y)$).

2.2. The Uniform Boundedness Principle

DEFINITION 2.11. A subset E of a metric space is called *dense* if $\bar{E} = X$ and *nowhere dense* if $\bar{E} = \emptyset$. X is said to be of *first category* if it is the countable union of nowhere dense sets; otherwise, X is said to be of *second category*.

Theorem 2.12 (Baire Category Theorem). Let X be a complete metric space.

- (a) If $\{U_n\}_{n\in\mathbb{N}}$ is a sequence of open dense subsets of X, then $\cap_{n\in\mathbb{N}}U_n$ is dense in X.
- (b) X is not a countable union of nowhere dense sets.

["A complete metric space is of second category."]

THEOREM 2.13 (Uniform Boundedness Principle). Let \mathcal{X} be a Banach space and let \mathcal{Y} be a normed linear space. Let $\{L_{\alpha}\}_{{\alpha}\in I}$ be a collection of bounded linear operators $L_{\alpha}: \mathcal{X} \to \mathcal{Y}$. If $\sup_{{\alpha}\in I} \|L_{\alpha}(x)\| < \infty$ for all $x \in \mathcal{X}$, then $\sup_{{\alpha}\in I} \|L_{\alpha}\| < \infty$. ["Pointwise boundedness implies uniform boundedness."]

THEOREM 2.14 (Banach-Steinhaus Theorem). Let \mathcal{X} be a Banach space and let \mathcal{Y} be a normed linear space. Let $L_n : \mathcal{X} \to \mathcal{Y}$ be bounded linear operators for all $n \in \mathbb{N}$. If $\lim_{n\to\infty} L_n(x)$ exists for each $x \in \mathcal{X}$, then $L(x) = \lim_{n\to\infty} L_n(x)$ defines a bounded linear operator from \mathcal{X} to \mathcal{Y} .

2.3. The Open Mapping and Closed Graph Theorems

DEFINITION 2.15. A linear map $L: \mathcal{X} \to \mathcal{Y}$ is called *open* if L(U) is open in \mathcal{Y} for each set U which is open in \mathcal{X} .

THEOREM 2.16 (Open Mapping Theorem). Let \mathcal{X} , \mathcal{Y} be Banach spaces and suppose that $L: \mathcal{X} \to \mathcal{Y}$ is a bounded linear operator that is onto (i.e., $L(\mathcal{X}) = \mathcal{Y}$). Then L is an open mapping.

THEOREM 2.17 (Banach Inverse Theorem). Let \mathcal{X} , \mathcal{Y} be Banach spaces and suppose that $L: \mathcal{X} \to \mathcal{Y}$ is a bounded, bijective, linear operator. Then L has a bounded inverse.

DEFINITION 2.18. The graph Γ of a linear map $L: X \to Y$ is defined to be $\Gamma(L) = \{(x, L(x)) : x \in X\} \subset X \times Y$. We say that L is closed if it has a closed graph.

Example 2.19. If f is continuous, then $\Gamma(f)$ is closed.

THEOREM 2.20 (Closed Graph Theorem). Let \mathcal{X} , \mathcal{Y} be Banach spaces and suppose that $L: \mathcal{X} \to \mathcal{Y}$ is a linear operator. If the graph of L is closed in $\mathcal{X} \times \mathcal{Y}$, then L is continuous.

CHAPTER 3

Hilbert Spaces

3.1. Inner Product Spaces

DEFINITION 3.1. Let H be a vector space. An inner product on H is a mapping $\langle \cdot, \cdot \rangle : H^2 \to \mathbb{F}$ with

- (a) $\langle x, y \rangle = \overline{\langle y, x \rangle}$ for all $x, y \in H$;
- (b) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ for all $x, y, z \in H$;
- (c) $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ for all $x, y \in H$ and $\alpha \in \mathbb{F}$;
- (d) $\langle x, x \rangle \ge 0$; $\langle x, x \rangle = 0$ iff x = 0.

H (together with $\langle \cdot, \cdot \rangle$) is then called an *inner product space*.

Example 3.2. (a) $\langle f,g\rangle=\int_{\Omega}f\bar{g}\mathrm{d}\mu$ defines an inner product on $L^2(\Omega,\mu)$.

(b) $\langle x, y \rangle = \sum_{n \in \mathbb{N}} x_n \overline{y_n}$ defines an inner product on l^2 .

Theorem 3.3 (Cauchy-Schwarz Inequality). Let H be an inner product space. Then $|\langle x,y\rangle|^2 \leq \langle x,x\rangle \langle y,y\rangle$ for all $x,y\in H$. Moreover, equality occurs iff y=0 or $x=\lambda y$ for some constant λ .

COROLLARY 3.4. If H (together with $\langle \cdot, \cdot \rangle$) is an inner product space, then $||x|| = \sqrt{\langle x, x \rangle}$ defines a norm on H.

Definition 3.5. A complete inner product space is called a *Hilbert space*.

Theorem 3.6. Let E be a nonempty, closed, and convex subset of a Hilbert space. Then E contains a unique element of least norm.

Remark 3.7. Let H be a Hilbert Space. For each fixed $z \in \mathcal{H}$, define $\varphi_z(x) = \langle x, z \rangle$ for all $x \in \mathcal{H}$. Then $\varphi_z \in \mathcal{H}^*$. We will see later that all $\varphi \in \mathcal{H}^*$ arise this way (Riesz Representation Theorem), so we will write $\mathcal{H}^* = \mathcal{H}$ (\mathcal{H} is self-dual and reflexive). We also write $E^{\perp} = \{y \in \mathcal{H} : \langle x, y \rangle = 0 \text{ for all } x \in E\}$ for $E \subset \mathcal{H}$. If $\langle x, y \rangle = 0$, then we write $x \perp y$. If $x \in E^{\perp}$, we also write $x \perp E$.

THEOREM 3.8 (Projection Theorem). Suppose \mathcal{M} be a closed subspace of a Hilbert space \mathcal{H} . Let $h \in \mathcal{H}$. If f_0 is the unique element of \mathcal{M} such that $d(h, \mathcal{M}) = d(h, f_0)$, then $h - f_0 \perp \mathcal{M}$. Conversely, if $f_0 \in \mathcal{M}$ with $h - f_0 \perp \mathcal{M}$, then $d(h, \mathcal{M}) = d(h, f_0)$.

DEFINITION 3.9. Let \mathcal{M} and \mathcal{N} be two subspaces of \mathcal{H} such that $\mathcal{M} \cap \mathcal{N} = \{0\}$ and such that each $x \in \mathcal{H}$ can be written as $x = x_M + x_N$ for $x_M \in \mathcal{M}$ and $x_N \in \mathcal{N}$. Then \mathcal{H} is said to be the *orthogonal direct sum* of \mathcal{M} and \mathcal{N} . We write $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$.

THEOREM 3.10. Let \mathcal{H} be a Hilbert space and \mathcal{M} a nonempty closed subspace of \mathcal{H} . Then $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$.

REMARK 3.11. According to the previous theorem, for each $h \in \mathcal{H}$ there are unique $Ph \in \mathcal{M}$ and $q \in \mathcal{M}^{\perp}$ with h = Ph + q. This defines an operator $P : \mathcal{H} \to \mathcal{H}$, which is called the *orthogonal projection* of h onto \mathcal{M} . It is easy to show that P is a bounded linear projection with ||P|| = 1.

THEOREM 3.12 (Riesz Representation Theorem). Let \mathcal{H} be a Hilbert space and let $f \in \mathcal{H}^*$. Then there exists a unique $z \in \mathcal{H}$ such that $f(x) = \langle x, z \rangle$ for all $x \in \mathcal{H}$. Moreover ||z|| = ||f||.

DEFINITION 3.13. An orthonormal subset of a Hilbert space \mathcal{H} is a subset E having the properties

- (a) ||e|| = 1 for all $e \in E$;
- (b) $e_1 \perp e_2$ for all $e_1, e_2 \in E$ with $e_1 \neq e_2$.

EXAMPLE 3.14. (a) For $\mathcal{H} = \mathbb{F}^n$, the *n* kth unit vectors in \mathbb{F}^n form an orthonormal subset of \mathcal{H} .

(b) For $\mathcal{H} = L^2[0, 2\pi]$, the functions e_m defined by $e_m(t) = \frac{1}{\sqrt{2\pi}} e^{int}$ form an orthonormal subset of \mathcal{H} .

LEMMA 3.15. Let $\{e_1, \ldots, e_n\}$ be an orthonormal set in a Hilbert space \mathcal{H} and let $\mathcal{M} = \langle e_1, \ldots, e_n \rangle$. If P is the orthogonal projection of \mathcal{H} onto \mathcal{M} , then $Ph = \sum_{k=1}^{n} \langle h, e_k \rangle e_k$ for all $h \in \mathcal{H}$.

THEOREM 3.16 (Bessel's Inequality). If $\{e_n : n \in \mathbb{N}\}$ is an orthonormal set and $h \in \mathcal{H}$, then $\sum_{n \in \mathbb{N}} |\langle h, e_n \rangle|^2 \leq ||h||^2$.

DEFINITION 3.17. An orthonormal set in a Hilbert space is called *complete* if the only vector which is orthogonal to every member of the set is the zero vector.

THEOREM 3.18. Let $\{e_n : n \in \mathbb{N}\}\$ be a complete orthonormal set in a Hilbert space \mathcal{H} . Then $x = \sum_{n \in \mathbb{N}} \langle x, e_n \rangle e_n$ and $||x||^2 = \sum_{n \in \mathbb{N}} |\langle x, e_n \rangle|^2$ for all $x \in \mathcal{H}$.

3.2. Adjoint Operators

THEOREM 3.19. Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces and let $A \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_2)$. Then there exists a unique $A^* \in \mathcal{B}(\mathcal{H}_2, \mathcal{H}_1)$ such that $\langle Ax, y \rangle = \langle x, A^*y \rangle$ for all $x \in \mathcal{H}_1$ and $y \in \mathcal{H}_2$. Definition 3.20. The operator A^* from Theorem 3.19 is called the adjoint of A. If $A^* = A$, then we call A self-adjoint (or Hermitian). If $A^*A = AA^*$, then we call A normal. If $A^*A = AA^* = I$, then we call A normal.

Example 3.21. (a) If A is a square matrix with complex entries, then $A^* = \bar{A}^T$.

- (b) Fix $\phi \in L^{\infty}(\mu)$. If $M_{\phi}: L^{2}(\mu) \to L^{2}(\mu)$ is defined by $M_{\phi}(f) =$ ϕf , then $M_{\phi}^* = M_{\bar{\phi}}$.
- (c) If $V: L^2([0,1]) \to L^2([0,1])$ is defined by $(Vf)(x) = \int_0^x f(t) dt$, then V^* is given by $(V^*g)(t) = \int_t^1 g(t) dt$.

Remark 3.22. (a) $A^{**} = A$ and $||A^*|| = ||A||$.

- (b) $(\alpha I)^* = \bar{\alpha} I$, where I is the identity operator.
- (c) $(AB)^* = B^*A^*$.
- (d) $(\operatorname{Im} A)^{\perp} = \operatorname{Ker} A^*$.

THEOREM 3.23. Let \mathcal{H} be a Hilbert space and $A \in \mathcal{B}(\mathcal{H}, \mathcal{H})$. Then

- (a) $||A|| = \sup_{||y|| \le 1} \sup_{||x|| \le 1} \operatorname{Re} \langle Ax, y \rangle$, (b) $and, if A is self-adjoint, <math>||A|| = \sup_{||x|| = 1} |\langle Ax, x \rangle|$.

COROLLARY 3.24. Let A be self-adjoint and suppose that $\langle Ah, h \rangle = 0$ holds for all h. Then A = 0.

Lemma 3.25. An operator A on a Hilbert space is normal iff ||Ah|| = $||A^*h||$ holds for all h iff (provided $\mathbb{F} = \mathbb{C}$) the real and imaginary parts of A (i.e., $(A + A^*)/2$ and $(A - A^*)/(2i)$, respectively) commute.

3.3. The Spectral Theorem

DEFINITION 3.26. Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{H})$, where \mathcal{H} is a Hilbert space. Then $\sigma(A) = \{\lambda \in \mathbb{C} : \lambda I - A \text{ is not invertible}\}\$ is called the *spectrum* of A.

Remark 3.27. There are two ways for λ to be in $\sigma(A)$: Either if $\lambda I - A$ is not onto, or if $\lambda I - A$ is not one-to-one. The last case is equivalent to the existence of an $x \in \mathcal{H} \setminus \{0\}$ with $(\lambda I - A)x = 0$, i.e., $Ax = \lambda x$. In this case we say that λ is an eigenvalue of A with corresponding eigenvector x.

Theorem 3.28. Suppose A is a self-adjoint bounded operator on a Hilbert space. Then all eigenvalues are real and eigenvectors corresponding to distinct eigenvalues are orthogonal.

Definition 3.29. Suppose X and Y are normed spaces and $A: X \to A$ Y is linear. Then A is said to be compact if the sequence $\{Ax_n\}_{n\in\mathbb{N}}\subset Y$ has a convergent subsequence in Y whenever $\{x_n\}_{n\in\mathbb{N}}\subset X$ is a bounded sequence in X.

Example 3.30. (a) Compact operators are bounded.

- (b) Bounded finite rank perators are compact.
- (c) The identity operator on an infinite-dimensional Hilbert space is not compact.

Theorem 3.31. Let K be a compact Hermitian operator on a Hilbert space. Then either ||K|| or -||K|| is an eigenvalue of K.

Theorem 3.32. Let K be a compact Hermitian operator on a Hilbert space. The set of eigenvalues of K is a set of real numbers which either is finite or consists of a countable sequence tending to zero.

DEFINITION 3.33. A closed subspace \mathcal{M} of a Hilbert space is said to be *invariant* under a bounded linear operator T if $T(\mathcal{M}) \subset \mathcal{M}$.

LEMMA 3.34. Let \mathcal{M} be a closed linear subspace of a Hilbert space which is invariant under a bounded linear operator T. Then \mathcal{M}^{\perp} is invariant under T^* .

THEOREM 3.35 (Spectral Theorem). Let K be a compact Hermitian operator on a Hilbert space \mathcal{H} . Then there exists a finite or infinite orthonormal sequence $\{\varphi_n\}$ of eigenvectors of K, with corresponding eigenvectors $\{\lambda_n\}$, such that $Kx = \sum_n \lambda_n \langle x, \varphi_n \rangle \varphi_n$ for all $x \in \mathcal{H}$. The sequence $\{\lambda_n\}$, if infinite, tends to 0.