- 1. (a) Let (\mathbb{R}, d) be a metric space. Show that (\mathbb{R}, D) with $D(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ is also a metric space.
 - (b) Show that the set of binary words with length n together with the so-called Hamming distance (which is the number of places where the two words differ from each other) is a metric space.
- 2. Let $(\mathcal{X}, \|\cdot\|)$ be a normed linear space. Show that the following mappings are continuous:
 - (a) $\|\cdot\|: \mathcal{X} \to \mathbb{R};$
 - (b) $+: \mathcal{X} \times \mathcal{X} \to \mathcal{X};$
 - (c) $\cdot : \mathbb{F} \times \mathcal{X} \to \mathcal{X}$.
- 3. A subset E of a vector space is *convex* if for every $x, y \in E$, $\lambda x + (1 \lambda)y \in E$ for all $0 \le \lambda \le 1$. Let \mathcal{X} be a normed space. Prove the following:
 - (a) The open unit ball $\{x \in \mathcal{X} : ||x|| < 1\}$ is convex;
 - (b) For a convex set $P \subset \mathcal{X}$, \bar{P} is convex;
 - (c) For a convex set $P \subset \mathcal{X}$, $\overset{\circ}{P}$ is convex.
- 4. Let \mathcal{X} be a Banach space, and suppose that there exists q < 1 such that the mapping $T : \mathcal{X} \to \mathcal{X}$ satisfies $||T(x) T(y)|| \le q ||x y||$ for all $x, y \in \mathcal{X}$.
 - (a) Show that T is continuous.
 - (b) Let $x_0 \in \mathcal{X}$ and define a sequence $\{x_n\}$ recursively by $x_{n+1} = T(x_n)$ for all $n \in \mathbb{N}_0$. Show that $\tilde{x} = \lim_{n \to \infty} x_n$ exists and satisfies $T(\tilde{x}) = \tilde{x}$.
- 5. Let a linear system of equations $\xi A\xi = \eta$ be given. Suppose that A is an $n \times n$ -matrix such that the sum of the squares of all its entries is less than 1.
 - (a) Apply the previous problem to suggest an iterative method to solve this system.
 - (b) Test your method with the system $\begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{3} & \frac{3}{4} \end{pmatrix} \xi = \begin{pmatrix} 0 \\ \frac{7}{6} \end{pmatrix}$. If you like (for 10 extra points) write a computer program that implements your method.
- 6. (a) Show that l_0 is not a closed linear subspace of $(l_2, \|\cdot\|_2)$.
 - (b) Let $x:[a,b]\to\mathbb{R}$. Show $||x||_{\infty}\leq ||x||_{BV}$.
- 7. (a) Let l^{∞} be the set of all bounded real sequences. Show that $(l^{\infty}, \|\cdot\|_{\infty})$ is a Banach space.
 - (b) Show that the set c of all convergent real sequences (with norm $\|\cdot\|_{\infty}$) is a Banach space.
- 8. Let $p \in (0,1)$. Show that
 - (a) $(L^p[0,1], \|\cdot\|_p)$ is not a normed space;
 - (b) $d(f,g) = \int |f g|^p d\mu$ is a metric on L^p .
- 9. For $z \in \partial \Delta = \{z \in \mathbb{C} : |z| = 1\}$, define $f(z) = \frac{1}{\sqrt{1-z}}$.
 - (a) Is $f \in L^1(\partial \Delta)$?
 - (b) Is $f \in L^2(\partial \Delta)$?