- 19. Suppose $x \in l^m$ for some $m \in [1, \infty)$. Prove that
 - (a) $x \in l^p$ for all $p \ge m$;
 - (b) $||x||_{\infty} = \lim_{p \to \infty} ||x||_{p}$.
- 20. Let \mathcal{X} , \mathcal{Y} , and \mathcal{Z} be normed linear spaces. Show the following:
 - (a) For $L \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ and $K \in \mathcal{B}(\mathcal{Y}, \mathcal{Z})$ we have $KL \in \mathcal{B}(\mathcal{X}, \mathcal{Z})$ and $||KL|| \le ||K|| \, ||L||$;
 - (b) The mapping $\cdot : \mathcal{B}(\mathcal{Y}, \mathcal{Z}) \times \mathcal{B}(\mathcal{X}, \mathcal{Y}) \to \mathcal{B}(\mathcal{X}, \mathcal{Z})$ is continuous.
- 21. Find the dual spaces of
 - (a) \mathbb{R}^n ;
 - (b) $l^p (1$
 - (c) c_0 (sequences converging to zero).
- 22. For each $f \in L^2[0,1]$, define a function Vf by $(Vf)(x) = \int_0^x f(t) dt$.
 - (a) Prove that $V: L^2[0,1] \to L^2[0,1]$ is a bounded linear operator.
 - (b) Find $KerV = \{0\}$.
 - (c) Is V onto $\{f \in L^2[0,1]: f(0)=0\}$?
 - (d) Is V onto $\{f \in C[0,1]: f(0) = 0\}$?
- 23. Suppose \mathcal{X} is a Banach space and $K \in \mathcal{B}(\mathcal{X}, \mathcal{X})$ with ||K|| < 1. Show that I K is invertible and find a formula for the inverse. Show that the inverse is a bounded linear operator and give an upper bound for its norm.
- 24. Here are some applications of the previous problem.
 - (a) Let L be an $n \times n$ Leontieff matrix (i.e., all entries are ≥ 0 and the sums of the columns are < 1). Let $y \in \mathbb{R}^n$ have entries ≥ 0 . Show that x Lx = y has a solution x with entries ≥ 0 .
 - (b) If k is continuous on $[a, b] \times [a, b]$, we define the Fredholm operator $F : C[a, b] \to C[a, b]$ by $(Fx)(t) = \int_a^b k(t, s)x(s)\mathrm{d}s$. Let $y \in C[a, b]$. Show that x Fx = y has a unique solution $x \in C[a, b]$ provided $\max_{a \le t \le b} \int_a^b |k(t, s)|\mathrm{d}s < 1$ holds.
 - (c) If k is continuous on $[a,b] \times [a,b]$, we define the Volterra operator $V: C[a,b] \to C[a,b]$ by $(Vx)(t) = \int_a^t k(t,s)x(s)\mathrm{d}s$. Let $y \in C[a,b]$. Show that x Vx = y has a unique solution $x \in C[a,b]$.
- 25. Show that all finite dimensional subspaces of a normed space are complete and therefore closed.
- 26. Let \mathcal{X} be a normed vector space and \mathcal{M} a proper closed subspace. Prove the following:
 - (a) $||x + \mathcal{M}|| = d(x, \mathcal{M})$ defines a norm on \mathcal{X}/\mathcal{M} ;
 - (b) For any $\varepsilon > 0$ there exists $x \in \mathcal{X}$ with ||x|| = 1 and $||x + \mathcal{M}|| \ge 1 \varepsilon$;
 - (c) The projection $\pi: \mathcal{X} \to \mathcal{X}/\mathcal{M}$ defined by $\pi(x) = x + \mathcal{M}$ has norm 1;
 - (d) If \mathcal{X} is complete, then so is \mathcal{X}/\mathcal{M} .
- 27. Let \mathcal{X} be a vector space over \mathbb{C} . Prove the following:
 - (a) If f is a complex linear functional and u = Ref, then u is a real linear functional, and f(x) = u(x) iu(ix) for all $x \in \mathcal{X}$;
 - (b) If u is a real linear functional and f is defined by f(x) = u(x) iu(ix) for all $x \in \mathcal{X}$, then f is complex linear;
 - (c) If \mathcal{X} is normed, then ||f|| = ||u|| in both of the above two cases.