21. Problems from the Textbook: 1, 3, 5, 7, 9, 11, 13, 17, 27, 29 (2.8); 1, 5, 7, 9, 11, 13, 15, 25, 27, 31, 37, 39, 41, 45, 49, 51, 54 (2.9); 1, 5, 7, 9, 17, 21, 23, 25, 29, 31 (2.10); 1, 4, 11, 12, 20, 23, 24 (2.PP); 4, 8, 11, 16, 19, 24, 30, 36, 41, 43, 47, 52, 53, 56, 60, 65 (3.1).

22. Find all points x_0 such that f has a tangent at x_0 parallel to the x-axis. Also, find both the linear and quadratic approximations of f at a. Use them to approximate $f(b)$.

(a) $f(x) = \frac{x^4}{3} + \frac{x^2 - 20x + 100001}{48}$, $a = 2$, $b = 2.1$,
(b) $f(x) = \frac{x - 1}{x^2 + 2}$, $a = 3$, $b = 3.3$,
(c) $f(x) = (x^3 - 1)^8(3x^2 + 4x)^7$, $a = 1$, $b = 0.9$,
(d) $f(x) = \sqrt{x}\sqrt{x^2 + 1}$, $a = 2$, $b = 2.2$,
(e) $f(x) = \alpha x^2 + \beta x + \gamma$, where α, β, γ are real numbers, $a = 0$, $b = 0.5$.

23. Let $f(x) = x^3 - x^2 - 2$.

(a) Show that f has a zero between 1 and 2, pick an x_0, and find the zero of the tangent of f at x_0.
(b) Apply Newton’s method until the first 7 decimal places of the zero are correct.

24. Let $f(x) = 8.5x^3 - 9.5x^2 - 7.5x + 1$.

(a) Let $x_0 = 0$ and apply Newton’s method until the first 7 decimal places of the zero are correct.
(b) Give this zero exactly.
(c) Find the remaining two zeros of f.

25. Let a be a real number. We want to compute $\sqrt[3]{a}$.

(a) Find a function $f(x)$ that has $\sqrt[3]{a}$ as its zero.
(b) Compute $x - \frac{f(x)}{f'(x)}$ and simplify.
(c) Use Newton’s method to find the first 7 decimal places of $\sqrt[3]{2}$.
(d) Use Newton’s method to find the first 7 decimal places of $\sqrt[3]{3}$.

26. Find the smallest and largest values of f on D:

(a) $f(x) = x^2$, $D = [-4, 5]$;
(b) $f(x) = 5x^2 - 6x + 2$, $D = (-\infty, 1]$;
(c) $f(x) = -x^3$, $D = (1, 5]$;
(d) $f(x) = \frac{x^3}{x}$, $D = [-2, 2] \setminus \{0\}$;
(e) $f(x) = \frac{1}{x}$, $D = [-6, \frac{1}{2}] \setminus \{0\}$;
(f) $f(x) = 2x^3 - 9x^2 + 12x - 30$, $D = [-3, 3]$;
(g) $f(x) = x^4 - 4x^3 + 6x^2 - 4x$, $D = [-2, 1]$;
(h) $f(x) = ax^2 + bx + c$, $D = \mathbb{R}$.