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Abstract

We prove several growth theorems for second-order dynamic equations on time scales. These theorems contain as
special cases results for second-order differential equations, difference equations, and q-difference equations.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we prove some results for the second-order linear dynamic equation
0096-3
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xDD þ qðtÞxr ¼ 0 ð1:1Þ

as well as corresponding results for the second-order nonlinear dynamic equation
ðpðtÞxDÞD þ qðtÞðf � xrÞ ¼ 0: ð1:2Þ

Throughout, we assume that p; q : T! R are rd-continuous functions. Our results contain corresponding re-
sults for second-order differential equations (see [2]) as well as for second-order difference equations (see [6,7]).
The reason for this is that dynamic equations on time scales have been designed in order to unify continuous
and discrete analysis. Furthermore, they contain other important equations, for example so-called q-difference
equations. In Section 2 we will give a very brief introduction to the time scales calculus; the reader is referred
to [4,5] for further study. Next, in Section 3 we present some preliminary results that are needed in the remain-
der of this paper. Eq. (1.1) is considered in Section 4, while Section 5 is devoted to the study of (1.2).

2. Elements of time scales calculus

In this section we present some definitions and elementary results connected to the time scales calculus. For
further study we refer the reader to the monographs [4,5]. A time scale T is an arbitrary nonempty closed
003/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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subset of the real numbers R, which is assumed throughout this paper to be unbounded above. On T we define
the forward and backward jump operators by
rðtÞ :¼ inf s 2 T : s > tf g and qðtÞ :¼ sup s 2 T : s < tf g for t 2 T:
A point t 2 T with t > inf T is said to be left-dense if q(t) = t and right-dense if r(t) = t, left-scattered if q(t) < t

and right-scattered if r(t) > t. Next, the graininess function l is defined by l(t) :¼ r(t) � t for t 2 T. For a
function f : T! R, the (delta) derivative fD(t) at t 2 T is defined to be the number (provided it exists) with
the property such that for every e > 0 there exists a neighbourhood U of t with
jf ðrðtÞÞ � f ðsÞ � f DðtÞðrðtÞ � sÞj 6 ejrðtÞ � sj for all s 2 U :
A simple useful formula is
f r ¼ f þ lf D; where f r :¼ f � r:
We will use the product rule and the quotient rule for the derivative of the product fg and the quotient f/g
(if ggr 5 0) of two differentiable functions f and g
ðfgÞD ¼ f Dg þ f rgD ¼ fgD þ f Dgr and
f
g

� �D

¼ f Dg � gDf
ggr

:

For a; b 2 T and a function f : T! R, the Cauchy integral of f is defined by
Z b

a
f ðtÞDt ¼ F ðbÞ � F ðaÞ; where F D ¼ f ;
i.e., F is an antiderivative of f. The function f : T! R is called rd-continuous if it is continuous in right-dense
points and if the left-sided limits exist in left-dense points. Hilger’s main existence theorem [4, Theorem 1.74]
says that rd-continuous functions possess antiderivatives. If p : T! R is rd-continuous and regressive (i.e.,
1 + l(t)p(t) 5 0 for all t 2 T), then another existence theorem says that the initial value problem yD = p(t)y,
y(t0) = 1 (where t0 2 T) possesses a unique solution ep(Æ, t0). The set of all rd-continuous and regressive func-
tions is denoted by Crd.

Example 1. Note that in the case T ¼ R we have
rðtÞ ¼ t; lðtÞ � 0; f DðtÞ ¼ f 0ðtÞ;

and in the case T ¼ Z we have
rðtÞ ¼ t þ 1; lðtÞ � 1; f DðtÞ ¼ Df ðtÞ ¼ f ðt þ 1Þ � f ðtÞ:

Another important time scale is T ¼ qN0 :¼ fqk : k 2 N0g with q > 1, for which
rðtÞ ¼ qt; lðtÞ ¼ ðq� 1Þt; f DðtÞ ¼ f ðqtÞ � f ðtÞ
ðq� 1Þt ;
and this time scale gives rise to so-called q-difference equations.
3. Preliminary results

The following dynamic version of Gronwall’s inequality [1, Theorem 3.1] together with one of its special
cases [4, Corollary 6.7] will be needed. Throughout we let t0 2 T with t0 P 1, and we put T0 ¼ T \ ½t0;1Þ.

Lemma 1. Suppose u,a,b,p 2 Crd and b(t), p(t) P 0 for all t 2 T. Then
uðtÞ 6 aðtÞ þ pðtÞ
Z t

t0

bðsÞuðsÞDs for all t 2 T0
implies
uðtÞ 6 aðtÞ þ pðtÞ
Z t

t0

aðsÞbðsÞebpðt; rðsÞÞDs for all t 2 T0:
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Corollary 1. Suppose u,b 2 Crd, c 2 R and b(t) P 0 for all t 2 T. Then
uðtÞ 6 cþ
Z t

t0

bðsÞuðsÞDs for all t 2 T0
implies
uðtÞ 6 cebðt; t0Þ for all t 2 T0:
We also make use of the following result which is proved in [3, Remark 2].

Lemma 2. If p 2 Crd such that p(t) P 0 for all t 2 T, then
1þ
Z t

t0

pðsÞDs 6 epðt; t0Þ 6 exp

Z t

t0

pðsÞDs

� �
for all t 2 T0:
The following lemma is needed as well. Since it is a new result, we supply a proof.

Lemma 3. If f 2 Crd, then
Z t

t0

Z s

t0

f ðsÞDsDs ¼
Z t

t0

½t � rðsÞ�f ðsÞDs for all t 2 T0 ð3:1Þ
and
 Z rðtÞ

t0

Z s

t0

f ðsÞDsDs ¼
Z t

t0

½rðtÞ � rðsÞ�f ðsÞDs for all t 2 T0: ð3:2Þ
Proof. We first show (3.1). Since rd-continuous functions possess antiderivatives, we can find functions
F ;G;H : T! R such that
F DðtÞ ¼ f ðtÞ; GDðtÞ ¼ F ðtÞ; and HDðtÞ ¼ rðtÞf ðtÞ:

Let us define a function k by
kðtÞ ¼
Z t

t0

Z s

t0

f ðsÞDsDs�
Z t

t0

½t � rðsÞ�f ðsÞDs:
This implies
kðtÞ ¼
Z t

t0

½F ðsÞ � F ðt0Þ�Ds� t½F ðtÞ � F ðt0Þ� þ HðtÞ � Hðt0Þ

¼ GðtÞ � Gðt0Þ þ t0F ðt0Þ � tF ðtÞ þ HðtÞ � Hðt0Þ:
Therefore k(t0) = 0 and kD(t) = 0 by the product rule, so that k(t) � 0 for all t 2 T, i.e., (3.1) holds. Now we
have
 Z rðtÞ

t0

½rðtÞ � rðsÞ�f ðsÞDs ¼
Z t

t0

½rðtÞ � rðsÞ�f ðsÞDsþ
Z rðtÞ

t
½rðtÞ � rðsÞ�f ðsÞDs

¼
Z t

t0

½rðtÞ � rðsÞ�f ðsÞDsþ lðtÞ½rðtÞ � rðtÞ�f ðtÞ ¼
Z t

t0

½rðtÞ � rðsÞ�f ðsÞDs;
and therefore (3.2) follows from (3.1). h
4. Linear dynamic equations

We first give the following result.

Theorem 1. Any solution of (1.1) satisfies
jxðrðtÞÞj 6 crðtÞerjqjðt; t0Þ for all t 2 T0; ð4:1Þ
where c = jx(t0) � xD(t0)j + jxD(t0)j.
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Proof. Suppose x solves (1.1). We integrate (1.1) between t0 and t to obtain
xDðtÞ ¼ xDðt0Þ �
Z t

t0

qðsÞxrðsÞDs: ð4:2Þ
Now, integrating (4.2) between t0 and r(t) provides
xðrðtÞÞ ¼ xðt0Þ þ xDðt0Þ½rðtÞ � t0� �
Z rðtÞ

t0

Z s

t0

qðsÞxrðsÞDsDs ¼ c1 þ c2rðtÞ �
Z t

t0

½rðtÞ � rðsÞ�qðsÞxrðsÞDs;
where we used (3.2) from Lemma 3 and put c1 = x(t0) � xD(t0) and c2 = xD(t0). Next, if r(t) P 1, then
jxðrðtÞÞj 6 jc1j þ jc2rðtÞj þ
Z t

t0

½rðtÞ � rðsÞ�jqðsÞjjxrðsÞjDs 6 crðtÞ þ rðtÞ
Z t

t0

jqðsÞjjxrðsÞjDs
with c = jc1j + jc2j. Define now
yðtÞ ¼ jxðrðtÞÞj
rðtÞ :
Then we obtain
yðtÞ 6 cþ
Z t

t0

jqðsÞjjxrðsÞjDs ¼ cþ
Z t

t0

rðsÞjqðsÞjyðsÞDs:
By the Gronwall lemma (Lemma 1), we obtain
yðtÞ 6 cerjqjðt; t0Þ for all t 2 T0;
i.e., (4.1). h

Corollary 2. Any solution x of (1.1) satisfies
xðrðtÞÞ ¼ OðrðtÞerjqjðt; t0ÞÞ as t!1: ð4:3Þ
For the continuous version of the next theorem we refer to [2, Theorem 5 in Chapter 6], while the discrete
version can be found in [7, Theorem 3.1].

Theorem 2. If
Z 1

t0

rðsÞjqðsÞjDs <1; ð4:4Þ
then the general solution of (1.1) is asymptotic to at + b as t!1, where a or b may be zero, but not both
simultaneously.

Proof. By (4.4), without loss of generality, we can assume that t0 is such that
Z 1

t0

rðsÞjqðsÞjDs < ln
3

2

� �
: ð4:5Þ
Let x be the solution of (1.1) with the initial conditions x(t0) = 1 and xD(t0) = 1. By Theorem 1, x satisfies (4.1)
with c = 1. Thus
Z t

t0

qðsÞxrðsÞDs

����
���� 6

Z t

t0

rðsÞjqðsÞjerjqjðs; t0ÞDs ¼ erjqjðt; t0Þ � 1 6 exp

Z t

t0

rðsÞjqðsÞjDs

� �
� 1

< exp ln
3

2

� �� �
� 1 ¼ 1

2
;
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where we used Lemma 2 and (4.5). In particular this means that the infinite integral
R1

t0
qðsÞxrðsÞDs converges,

and therefore, because of (4.2),
a :¼ lim
t!1

xDðtÞ exists:
Moreover, again by (4.2),
jxDðtÞjP 1�
Z t

t0

qðsÞxrðsÞDs

����
���� > 1

2

so that jajP 1
2
> 0. Now we claim that
xðtÞ � at as t!1; i:e:; lim
t!1

xðtÞ
at
¼ 1: ð4:6Þ
To show this, we write xD(t) = a + e(t) with e(t)! 0 as t!1, and then
xðtÞ ¼ xðt0Þ þ
Z t

t0

xDðsÞDs ¼ 1þ ðt � t0Þaþ
Z t

t0

eðsÞDs;
so
xðtÞ
at
¼ 1þ 1� at0

at
þ 1

at

Z t

t0

eðsÞDs! 1 as t!1;
where we used that 1
t

R t
t0

eðsÞDs! 0 as t!1 due to L’Hôpital’s rule [4, Theorem 1.119]. Hence (4.6) is estab-
lished. Thus, for sufficiently large t 2 T,
~xðtÞ :¼ xðtÞ
Z 1

t

Ds
xðsÞxðrðsÞÞ
is well defined. It is an easy calculation involving the product rule and the quotient rule to show that ~x is an-
other solution of (1.1) such that the Wronskian of ~x and x, defined by ~xxD � x~xD, is constant equal to one.
Therefore, for any nontrivial solution x̂ of (1.1), there exist two constants b; c 2 R with b2 + c2 > 0 such that
x̂ ¼ bxþ c~x. Since
lim
t!1

~xðtÞ ¼ lim
t!1

R1
t

Ds
xðsÞxðrðsÞÞ

1
xðtÞ

¼ lim
t!1

1

xDðtÞ ¼
1

a
;

where we used again L’Hôpital’s rule and the quotient rule, we find that
x̂ðtÞ ¼ bxðtÞ þ c~xðtÞ � bat þ c
a

as t!1;
which implies that the claimed statement holds with a = ba and b = c/a. h

In our next results we consider the two equations (1.1) and
yDD þ pðtÞyr ¼ 0: ð4:7Þ

We also put r = p � q.

Lemma 4. Let p,q 2 Crd, put r = p � q, and suppose x1 and x2 are two linearly independent solutions of (1.1). Let

y be any solution of (4.7). Then there exist c1; c2 2 R such that
yðtÞ ¼ c1x1ðtÞ þ c2x2ðtÞ þ c
Z t

t0

½x2ðrðsÞÞx1ðtÞ � x1ðrðsÞÞx2ðtÞ�rðsÞyrðsÞDs ð4:8Þ
and
yðrðtÞÞ ¼ c1x1ðrðtÞÞ þ c2x2ðrðtÞÞ þ c
Z t

t0

½x2ðrðsÞÞx1ðrðtÞÞ � x1ðrðsÞÞx2ðrðtÞÞ�rðsÞyrðsÞDs: ð4:9Þ
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Proof. Let y be any solution of (4.7). Now let d1; d2 2 R and define
x ¼ d1x1 þ d2x2 and z ¼ x� y:
Then
zDDðtÞ þ qðtÞzrðtÞ ¼ pðtÞyrðtÞ � qðtÞyrðtÞ ¼ rðtÞyrðtÞ;
where r = p � q. Thus z solves the inhomogeneous equation
zDD þ qðtÞzr ¼ rðtÞyrðtÞ
and hence by variation of parameters [4, Theorem 3.73] there exist d3; d4 2 R with
zðtÞ ¼ d3x1ðtÞ þ d4x2ðtÞ þ
Z t

t0

x1ðrðsÞÞx2ðtÞ � x2ðrðsÞÞx1ðtÞ
W ðx1; x2ÞðrðsÞÞ

rðsÞyrðsÞDs

¼ d3x1ðtÞ þ d4x2ðtÞ þ d
Z t

t0

½x1ðrðsÞÞx2ðtÞ � x2ðrðsÞÞx1ðtÞ�rðsÞyrðsÞDs;
where the Wronskian W(x1,x2)(t) � 1/d is constant. Next, since z = x � y, we arrive at (4.8), where
c1 = d1 � d3 and c2 = d2 � d4. Using (4.8) for r(t) instead of t and observing that
Z rðtÞ

t
½x1ðrðsÞÞx2ðrðtÞÞ � x2ðrðsÞÞx1ðrðtÞÞ�rðsÞyðrðsÞÞDs ¼ 0;
we obtain (4.9). h

Theorem 3. Let p,q 2 Crd and suppose x1 and x2 are two linearly independent solutions of (1.1) satisfying
Z 1

t0

jpðtÞ � qðtÞj½x2
1ðrðtÞÞ þ x2

2ðrðtÞÞ�Dt <1: ð4:10Þ
Then for any solution y of (4.7), there exist constants a; b 2 R such that
yðtÞ ¼ ax1ðtÞ þ bx2ðtÞ þOðjx1ðtÞj þ jx2ðtÞjÞ as t!1: ð4:11Þ
Proof. With the setting and notation from Lemma 4, we arrive at (4.9). Thus
jyðrðtÞÞj 6 ~cdðrðtÞÞ þ jcj
Z t

t0

dðrðsÞÞdðrðtÞÞjrðsÞjjyðrðsÞÞjDs ¼ dðrðtÞÞRðtÞ;
where ~c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 þ c2
2

p
, dðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1ðtÞ þ x2
2ðtÞ

p
, and
RðtÞ ¼ ~cþ jcj
Z t

t0

dðrðsÞÞjrðsÞjjyðrðsÞÞjDs 6 ~cþ jcj
Z t

t0

d2ðrðsÞÞjrðsÞjRðsÞDs:
Now, by Corollary 1 and Lemma 2, we obtain
RðtÞ 6 ~cejcjðdrÞ2jrjðt; t0Þ 6 ~c exp

Z t

t0

jcjd2ðrðsÞÞjrðsÞjDs

� �
so that limt!1R(t) exists and therefore both integrals
c3 ¼
Z 1

t0

x1ðrðsÞÞrðsÞyðrðsÞÞDs and c4 ¼
Z 1

t0

x2ðrðsÞÞrðsÞyðrðsÞÞDs
are finite. Hence, by using (4.8) and putting a = c1 + cc4 and b = c2 � cc3, we arrive at
yðtÞ ¼ ax1ðtÞ þ bx2ðtÞ � cx1ðtÞi2ðtÞ þ cx2ðtÞi1ðtÞ;
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where
i1ðtÞ ¼
Z 1

t
x1ðrðsÞÞrðsÞyðrðsÞÞDs and i2ðtÞ ¼

Z 1

t
x2ðrðsÞÞrðsÞyðrðsÞÞDs
both tend to zero as t!1. This proves (4.11). h

The following two corollaries are immediate from Theorem 3 and its proof.

Corollary 3. Let p,q 2 Crd and suppose
Z 1

t0

jpðtÞ � qðtÞjDt <1: ð4:12Þ
Suppose x1 and x2 are two linearly independent solutions of (1.1) satisfying
M :¼ sup
tPt0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1ðtÞ þ x2
2ðtÞ

q
<1:
Then, with the notation from the proof of Theorem 3, any solution y of (4.7) satisfies the growth condition
jyðtÞj 6 M~cejcjM2jp�qjðt; t0Þ:
Corollary 4. Suppose (4.12) holds. If all solutions of (1.1) are bounded, then so are all solutions of (4.7).

The continuous version of the above boundedness theorem is given in [2, Theorem 2 in Chapter 6]. Now we
consider La-boundedness of solutions of (1.1) and (4.7). We say that
f 2Laðt0;1Þ if kf ka :¼
Z 1

t0

jf ðsÞjaDs

� �1=a

<1
provided a 2 [1,1), and for a =1 we write
f 2L1ðt0;1Þ if kf k1 :¼ sup
t2T\½t0;1Þ

jf ðtÞj <1:
The next result is about a 2 (1,1), and its continuous version can be found in [2, Exercise 6.8.3]. The subse-
quent corollary with a = 2 is contained for differential equations in [2, Theorem 6 in Chapter 6]. Finally, when
a = 1, we give a result corresponding to the continuous result from [2, Exercise 6.8.5].

Theorem 4. Let p,q 2 Crd and suppose r :¼ p � q is bounded. Let a,b > 1 with 1/a + 1/b = 1. If all solutions x of

(1.1) satisfy xr 2Laðt0;1Þ \Lbðt0;1Þ, then all solutions y of (4.7) satisfy yr 2Laðt0;1Þ \Lbðt0;1Þ.

Proof. With the setting and notation from Lemma 4, we arrive at (4.9). Therefore, by taking into account that
there exists c3 > 0 such that jr(t)j 6 c3 for all t 2 T, we obtain
jyðrðtÞÞj 6 jc1x1ðrðtÞÞj þ jc2x2ðrðtÞÞj þ jcx1ðrðtÞÞjc3

Z t

t0

jx2ðrðsÞÞyðrðsÞÞjDs

þ jcx2ðrðtÞÞjc3

Z t

t0

jx1ðrðsÞÞyðrðsÞÞjDs:
Now we use the well-known inequality
ðaþ bÞa 6 2a�1ðaa þ baÞ for a; b P 0 and a P 1
twice, then use Hölder’s inequality [4, Theorem 6.13], and then put c4 :¼ kxr
1kb and c5 :¼ kxr

2kb to obtain
jyðrðtÞÞja 6 22ða�1Þðjc1x1ðrðtÞÞja þ jc2x2ðrðtÞÞjaÞ þ 22ða�1Þjcx1ðrðtÞÞc3ja
Z t

t0

jx2ðrðsÞÞyðrðsÞÞjDs

� �a

þ 22ða�1Þjcx2ðrðtÞÞc3ja
Z t

t0

jx1ðrðsÞÞyðrðsÞÞjDs

� �a

6 22ða�1Þðjc1x1ðrðtÞÞja þ jc2x2ðrðtÞÞjaÞ þ 22ða�1Þ jcc3x1ðrðtÞÞc5ja þ jcc3x2ðrðtÞÞc4jaf gSðtÞ;
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where
SðtÞ ¼
Z t

t0

jyðrðsÞÞjaDs:
By integrating the above inequality and putting c6 ¼ kxr
1ka and c7 ¼ kxr

2ka, we obtain
SðtÞ 6 c8 þ c9

Z t

t0

½jx1ðrðsÞÞja þ jx2ðrðsÞÞja�SðsÞDs;
where c8 = 22(a�1)(jc1c6ja + jc2c7ja) and c9 = 22(a�1)max{jcc5c3ja,jcc4c3ja}. By Corollary 1 and Lemma 2, we find
SðtÞ 6 c8ec9½jxr
1
jaþjxr

2
ja�ðt; t0Þ 6 c8 exp c9

Z t

t0

½jx1ðrðsÞÞja þ jx2ðrðsÞÞja�Ds

� �
and so
Z 1

t0

jyðrðsÞÞjaDs 6 c8ec9ðca
6
þca

7
Þ

so that we have indeed yr 2Laðt0;1Þ. By a duality argument, it is clear that yr 2Lbðt0;1Þ, too, finishing the
proof. h

Corollary 5. Let p,q 2 Crd and suppose p � q is bounded. If all solutions x of (1.1) satisfy xr 2L2ðt0;1Þ, then

all solutions y of (4.7) satisfy yr 2L2ðt0;1Þ.

Proof. Set a = b = 2 in Theorem 4. h

Theorem 5. Let p,q 2 Crd and suppose p � q is bounded. If all solutions x of (1.1) satisfy

xr 2L1ðt0;1Þ \L1ðt0;1Þ, then all solutions y of (4.7) satisfy yr 2L1ðt0;1Þ \L1ðt0;1Þ.

Proof. With the setting and notation from Lemma 4, we arrive at (4.9). Therefore, by taking into account that
there exists c3 > 0 such that jr(t)j 6 c3 for all t 2 T, we obtain
jyðrðtÞÞj 6 jc1x1ðrðtÞÞj þ jc2x2ðrðtÞÞj þ jcx1ðrðtÞÞjc3

Z t

t0

jx2ðrðsÞÞyðrðsÞÞjDs

þ jcx2ðrðtÞÞjc3

Z t

t0

jx1ðrðsÞÞyðrðsÞÞjDs

6 jc1x1ðrðtÞÞj þ jc2x2ðrðtÞÞj þ jcx1ðrðtÞÞjc3jx2j1
Z t

t0

jyðrðsÞÞjDs

þ jcx2ðrðtÞÞjc3jx1j1
Z t

t0

jyðrðsÞÞjDs

6 MsðtÞ þMsðtÞ
Z t

t0

jyðrðsÞÞjDs;
where we put
M ¼ max jc1j; jc2j; jcjc3kx2k1; jcjc3kx1k1
� 	

and sðtÞ ¼ jxr
1ðtÞj þ jxr

2ðtÞj:
Therefore, by Lemma 1, we have
jyðrðtÞÞj 6 MsðtÞ þMsðtÞ
Z t

t0

MsðsÞeMsðt; rðsÞÞDs ¼ MsðtÞ þMsðtÞ eMsðt; t0Þ � eMsðt; tÞf g ¼ MsðtÞeMsðt; t0Þ;
where we used the formula [4, Theorem 2.39]
Z b

a
pðtÞepðc; rðtÞÞDt ¼ epðc; aÞ � epðc; bÞ:
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Now we can conclude the following two statements. First, using Lemma 2, we obtain
jyðrðtÞÞj 6 Mðkx1k1 þ kx2k1ÞeMðkxr
1
k1þkxr

2
k1Þ;
so yr 2L1ðt0;1Þ. Second, again using Lemma 2, we arrive at
Z t

t0

jyðrðsÞÞjDs 6
Z t

t0

MsðsÞeMsðs; t0ÞDs ¼ eMsðt; t0Þ � 1 < eMsðt; t0Þ 6 eMðkxr
1
k1þkxr

2
k1Þ;
so yr 2L1ðt0;1Þ. Altogether, yr 2L1ðt0;1Þ \L1ðt0;1Þ. h
5. Nonlinear dynamic equations

Now we consider nonlinear equations of the form (1.2) and show the following result.

Theorem 6. Consider the equation
ðpðtÞxDÞD þ qðtÞðf � xrÞ ¼ gðtÞ ð5:1Þ

and assume the following:

1. p(t) P d > 0 for all t P t0;

2. q 2 Crd satisfies (4.4);

3. f : R! R satisfies jf(x)j 6 Ljxja for x 2 R, where L > 0 and a 2 [0,1];

4. g 2 Crd.

Then
xðrðtÞÞ ¼ O rðtÞ þ rðtÞ
Z t

t0

½rðtÞ � rðsÞ�jgðsÞjDs

� �
as t!1: ð5:2Þ
Proof. We integrate (5.1) between t0 and t to arrive at
xDðtÞ ¼ pðt0ÞxDðt0Þ
pðtÞ þ 1

pðtÞ

Z t

t0

½gðsÞ � qðsÞf ðxðrðsÞÞÞ�Ds:
Integrating this equation again between t0 and r(t), we obtain
xðrðtÞÞ ¼ xðt0Þ þ pðt0ÞxDðt0Þ
Z rðtÞ

t0

Ds
pðsÞ þ

Z rðtÞ

t0

1

pðsÞ

Z s

t0

½gðsÞ � qðsÞf ðxðrðsÞÞÞ�DsDs:
We now use the assumptions, Lemma 3, and the elementary inequality
jxja 6 1þ jxj for x 2 R and a 2 ½0; 1�

to find
jxðrðtÞÞj þ 1 6 jxðt0Þj þ 1þ jpðt0ÞxDðt0Þj
d

½rðtÞ � t0� þ
1

d

Z rðtÞ

t0

Z s

t0

jgðsÞjDsDs

þ L
d

Z rðtÞ

t0

Z s

t0

jqðsÞjjxðrðsÞÞjaDsDs ¼ jxðt0Þj þ 1þ jpðt0ÞxDðt0Þj
d

½rðtÞ � t0�

þ 1

d

Z t

t0

½rðtÞ � rðsÞ�jgðsÞjDsþ L
d

Z t

t0

½rðtÞ � rðsÞ�jqðsÞjjxðrðsÞÞjaDs

6 c½1þ rðtÞ þ AðtÞ� þ LrðtÞ
d

Z t

t0

jqðsÞj½1þ jxðrðsÞÞj�Ds;
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where we put
AðtÞ ¼
Z t

t0

½rðtÞ � rðsÞ�jgðsÞjDs and c ¼ max jxðt0Þj þ 1;
jpðt0ÞxDðt0Þj

d
;
1

d

� �
:

Now, by Lemmas 1 and 2, we conclude
jxðrðtÞÞj þ 1 6 c½1þ AðtÞ þ rðtÞ� þ LrðtÞ
d

Z t

t0

c½1þ AðsÞ þ rðsÞ�jqðsÞjeLjqjr=dðt; rðsÞÞDs

6 c½1þ AðtÞ þ rðtÞ� þ LrðtÞ
d

Z t

t0

c½1þ AðsÞ þ rðsÞ�jqðsÞj exp
L
d

Z s

t0

jqðsÞjrðsÞDs
� �

Ds

6 c½1þ AðtÞ þ rðtÞ� þ eM cLrðtÞ
d

Z t

t0

½1þ AðsÞ þ rðsÞ�jqðsÞjDs;
where the limit
M ¼ L
d

Z 1

t0

rðsÞjqðsÞjDs
is finite due to (4.4). Noticing that 0 6 A(s) 6 A(t) whenever s 6 t, we find
jxðrðtÞÞj
rðtÞ þ rðtÞAðtÞ 6

jxðrðtÞÞj þ 1

rðtÞ þ rðtÞAðtÞ 6
c

rðtÞ þ
c

1þ AðtÞ þ
eM cL

d

Z t

t0

1þ AðsÞ
1þ AðtÞ þ

rðsÞ
1þ AðtÞ


 �
jqðsÞjDs

6 2cþ 2eM cL
d

Z t

t0

rðsÞjqðsÞjDs 6 2cþ 2cMeM ;
which shows that (5.2) holds. h
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