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Abstract
We prove several growth theorems for second-order dynamic equations on time scales. These theorems contain as
special cases results for second-order differential equations, difference equations, and g¢-difference equations.
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1. Introduction

In this paper we prove some results for the second-order linear dynamic equation

X 4 g(H)x" =0 (1.1)
as well as corresponding results for the second-order nonlinear dynamic equation
(p(O)x*)" +q(O)(f 0x7) = 0. (1.2)

Throughout, we assume that p,g : T — R are rd-continuous functions. Our results contain corresponding re-
sults for second-order differential equations (see [2]) as well as for second-order difference equations (see [6,7]).
The reason for this is that dynamic equations on time scales have been designed in order to unify continuous
and discrete analysis. Furthermore, they contain other important equations, for example so-called g-difference
equations. In Section 2 we will give a very brief introduction to the time scales calculus; the reader is referred
to [4,5] for further study. Next, in Section 3 we present some preliminary results that are needed in the remain-
der of this paper. Eq. (1.1) is considered in Section 4, while Section 5 is devoted to the study of (1.2).

2. Elements of time scales calculus

In this section we present some definitions and elementary results connected to the time scales calculus. For
further study we refer the reader to the monographs [4,5]. A time scale T is an arbitrary nonempty closed
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subset of the real numbers R, which is assumed throughout this paper to be unbounded above. On T we define
the forward and backward jump operators by

ot):=inf{s€T:s>t} and p(t):=sup{seT:s<t} forreT.
A pointt € T with ¢z > inf T is said to be left-dense if p(z) = ¢ and right-dense if a(¢) = ¢, left-scattered if p(z) < ¢
and right-scattered if () > t. Next, the graininess function p is defined by u(¢) :=o(t) — t for t € T. For a
function f : T — R, the (delta) derivative (1) at t € T is defined to be the number (provided it exists) with
the property such that for every ¢ > 0 there exists a neighbourhood U of ¢ with

If (a(£)) = £(s) — f2(t)(a(t) — 5)| < ela(t) —s| forall s € U.

A simple useful formula is

f7=f+urt, where f7:=foo.

We will use the product rule and the quotient rule for the derivative of the product fg and the quotient f/g
(if gg” # 0) of two differentiable functions f and g

A A A
A _ A Gl — £y Ao d (J:) :fg—gf.
(/&) =/"¢+ S /R4S and () =T

For a,b € T and a function f : T — R, the Cauchy integral of f is defined by

/ " (A = F(b) — F(a), where F> = 1.

i.e., Fis an antiderivative of . The function f : T — R is called rd-continuous if it is continuous in right-dense
points and if the left-sided limits exist in left-dense points. Hilger’s main existence theorem [4, Theorem 1.74]
says that rd-continuous functions possess antiderivatives. If p: T — R is rd-continuous and regressive (i.e.,
1+ u(t)p(7) # 0 for all ¢ € T), then another existence theorem says that the initial value problem y* = p(#)y,
W(to) =1 (where t; € T) possesses a unique solution e,(:, fy). The set of all rd-continuous and regressive func-
tions is denoted by Ciq.

Example 1. Note that in the case T = R we have
o(t) =1, un)=0, fr)=/r"(1),
and in the case T = Z we have
oty =t+1, u)=1, fH0)=Af()=f(t+1)~f(0).
Another important time scale is T = g™ := {¢* : k € Ny} with ¢ > 1, for which

oty =qt, ne)=(g—1)t, ) :%’

and this time scale gives rise to so-called g-difference equations.

3. Preliminary results
The following dynamic version of Gronwall’s inequality [1, Theorem 3.1] together with one of its special
cases [4, Corollary 6.7] will be needed. Throughout we let o € T with 75 > 1, and we put T, = T N [¢y, 00).
Lemma 1. Suppose u,a,b,p € Cyq and b(t),p(t) = 0 for all t € T. Then
t
u(t) < a(?) +p(t)/ b(t)u(r)At forall t € Ty
I

0

implies

u(t) < a(t) + p(e) /tta(r)b(r)e;,p(t, a(t))At  for all t € T,.

0
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Corollary 1. Suppose u,b € C4, c € R and b(t) = 0 for all t € T. Then
t
u(t) <c —|—/ b(t)u(t)Ar  forall t € Ty
to

implies
u(t) < cep(t ty) forall t € Ty.

We also make use of the following result which is proved in [3, Remark 2].
Lemma 2. If p € Cyq such that p(t) = 0 for all t € T, then
t t
1 +/ p(t)At < ey(t, ty) < exp {/ p(r)Ar} forall t € Ty.
! fo

0

The following lemma is needed as well. Since it is a new result, we supply a proof.
Lemma 3. If f € C.q, then

//] ATAS—/[z_a( Nf(t)Ac forall t € T, (3.1)

/ / f(7)AtAs = / [0(t) — a(7)]f (v)At  for all t € T,. (3.2)
Proof. We first show (3.1). Since rd-continuous functions possess antiderivatives, we can find functions

F,G,H : T — R such that

FA0) = f(), G0y = F(), and H(1) = o(0)f (1),
Let us define a function k by

= /[f /tsf(r)ArAs - /tt[t —a(7)]f (7)Ar.
This implies
k(1) = /tt[F(S) — F(t0)|As — t[F (1) — F(t0)] + H(2) — H (1)

= G(t) — G(ty) + toF (to) — tF(t) + H(t) — H(t).

Therefore k(o) = 0 and k*(1) = 0 by the product rule, so that k(f) = 0 for all # € T, i.e., (3.1) holds. Now we
have

a(t) t a(t)
[ lo(t) — o(2)]f (1)t = / lo(t) — o(2)]f (1)t + / lot) - o(2)]f (1)

-/ 6(t) = o) (D)AT + (Dlo(t) — SO (1) = / o) — s/ (A,

and therefore (3.2) follows from (3.1). O

4. Linear dynamic equations

We first give the following result.
Theorem 1. Any solution of (1.1) satisfies
[x(a(1)| < co(t)eqq(t,to) forall t € Ty, (4.1

where ¢ = |x(tg) — xA(t0)| + |xA(t0)|.
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Proof. Suppose x solves (1.1). We integrate (1.1) between ¢y and ¢ to obtain
t
XA (1) = x2(ty) — / q(t)x’(t)Ar. (4.2)
to

Now, integrating (4.2) between ¢y and () provides

a(t) s ¢
x(a(t)) = x(to) + x*(t)[0() — to] —/t /t q(0)x’ (1) AtAs = ¢| + cy0(t) — /t [a(?) — a(1)]q(1)x°(1)At,

0

where we used (3.2) from Lemma 3 and put ¢; = x(z5) — x*(to) and ¢» = x*(1o). Next, if a(7) > 1, then
t t
x(a(0)] < ler] + [e2a(2)] +/ [0(1) = a(D]lg(D)|Ix"(7)|AT < ca(t) + G(t)/ lg(D)|Ix"(7)|Az
to tp
with ¢ = |¢| + |¢,|. Define now
_ (o)
alt)

Then we obtain

»(?)

Wo<es [ g@le @A = + / ' o(@)la(x)y(x)Ar.

fo
By the Gronwall lemma (Lemma 1), we obtain
(1) < cegy(t,t) forall t € T,
ie, (4.1). O

Corollary 2. Any solution x of (1.1) satisfies
x(a(t)) = O(a(t)eqsq(t,10)) as t — oo. (4.3)

For the continuous version of the next theorem we refer to [2, Theorem 5 in Chapter 6], while the discrete
version can be found in [7, Theorem 3.1].

Theorem 2. If
/00 a(7)]q(7)|AT < o0, (4.4)

fo

then the general solution of (1.1) is asymptotic to at + b as t — oo, where a or b may be zero, but not both
simultaneously.

Proof. By (4.4), without loss of generality, we can assume that ¢, is such that
o 3
[ o@la@iar <m 3) (45)
fo

Let x be the solution of (1.1) with the initial conditions x(zy) = 1 and x*(y) = 1. By Theorem 1, x satisfies (4.1)
with ¢ = 1. Thus

[ awoa

to

< [ ot@la@ean(s ) = eayt.) =1 < exp {/ 'o<r>|q<r>|Ar} 1

to fo

<exp{1n<%)}—1:%,
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where we used Lemma 2 and (4.5). In particular this means that the infinite integral ftzo q(7)x?(t)At converges,
and therefore, because of (4.2),

o= limx*(f) exists.

1—00

Moreover, again by (4.2),

1
A > — —
x*()] = 1 >5

[ atewoas

fo

so that |« > 1 > 0. Now we claim that
x(t) ~at ast— oo, Ile., tlina}: )%? =1. (4.6)
To show this, we write x*(¢) = « + &(7) with &) — 0 as t — oo, and then
x(t) = x(to) + /txA(r)Ar =1+ (t—t)a+ /ts(r)Ar,
t fo

SO

t 1 — ot 1
o) g 1o 1
ot ot ot

t
/ e(t)At — 1 ast— oo,
fo

where we used that% f; &(1)At — 0 as t — oo due to L’Hopital’s rule [4, Theorem 1.119]. Hence (4.6) is estab-
lished. Thus, for sufficiently large r € T,

() = e At
x@“*(”[ *(@x(o(2)

is well defined. It is an easy calculation involving the product rule and the quotient rule to show that ¥ is an-
other solution of (1.1) such that the Wronskian of ¥ and x, defined by ¥x* — x¥*, is constant equal to one.
Therefore, for any nontrivial solution % of (1.1), there exist two constants f3,y € R with %+ y* > 0 such that
X = px + yx. Since

lim %(¢) = I st _ 1]
’LI&X( - L =M (1) o

x(1)
where we used again L’Hopital’s rule and the quotient rule, we find that
&(t) = Br(t) + 9%(t) ~ Pot +§ as 1 — oo,
which implies that the claimed statement holds with ¢ = pa and b =y/a. O
In our next results we consider the two equations (1.1) and
VY 4 p(0)y” = 0. (4.7)
We also put r=p —gq.

Lemma 4. Let p,q € Cyq, put r = p — q, and suppose x, and x, are two linearly independent solutions of (1.1). Let
y be any solution of (4.7). Then there exist c1,c; € R such that

y(t) = cxi (2) + caxa(2) + c/t[xz(a(r))xl (1) — x1(a(1)x2(8)]r ()" (v) AT (4.8)

to

and

¥(a(1)) = erxi(a(1) + exa(a() + ¢ / t[Xz(ff(f))xl (0()) = x1(a(2)xa(a(0))]r(7)y” () Az, (4.9)

fo
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Proof. Let y be any solution of (4.7). Now let d;,d, € R and define
x=dx;+dyx; and z=x-—y.
Then
BA(8) + q()27 (1) = p(e)y" (1) — q(0)y° (1) = r()y° (1),
where r = p — ¢. Thus z solves the inhomogeneous equation
Mt q(t)2" = r(1)y" (1)

and hence by variation of parameters [4, Theorem 3.73] there exist d3,d; € R with

Z(f) = d3X1 (l) + d4X2(t) + /t xl(U(T)I?;(Z)ff)x:))gi((i§§))xl (t)

= dyx1 (1) + daxa(1) + d/t[xl (a(2))x2(1) = x2(0 (7)1 ()]r(T)y” (1) Ax,

r(0))y"(1)At

where the Wronskian W(x),x,)(f) = 1/d is constant. Next, since z=x —y, we arrive at (4.8), where
¢ =d, — dy and ¢, = d> — d,. Using (4.8) for o(¢) instead of 7 and observing that

a(t)
/t P (a(0)x2(a (1)) — x2(a(1))x1(a(2))]r(t)y(a(x)) AT = 0,
we obtain (4.9). O

Theorem 3. Let p,q € C.q and suppose x| and x, are two linearly independent solutions of (1.1) satisfying

/tx Ip(t) — q(1)][x}(a(1)) +x3(a (1)) Ar < oo (4.10)

0
Then for any solution y of (4.7), there exist constants a,b € R such that
y(t) = ax () + bxy(t) + O(|x1 ()| + |x2(2)]) as t — oc. (4.11)

Proof. With the setting and notation from Lemma 4, we arrive at (4.9). Thus

(o()] < ad(a() + I / 0)Ir(@)ly(o(2) | Ac = d(a(D)R(),
where ¢ = /¢ + 3, d(1) 2(¢) +x3(¢), and
fc+|c|/ (@)lly(o(2)|Ac < c+|c|/ & (o(0)|r()|R(2)Ac

Now, by Corollary 1 and Lemma 2, we obtain
t
R(O) < ey (t.0) < eexp { [ la()lrolac
lo
so that lim,_,R(?) exists and therefore both integrals

¢ = / " 5@ HDp(o(t)Ar and ¢ = / " (o (@)r(@)(o(0) Ac

are finite. Hence, by using (4.8) and putting a = ¢; + cc4 and b = ¢, — cc3, we arrive at

y(t) = axi (1) + bxa(t) — cx1 ()ir(2) + ex2(2)i1(2),



M. Bohner, S. Stevi¢ | Applied Mathematics and Computation 188 (2007) 15031512 1509

where
00 = [ n(e@rye)ar and b0 = [ ne@)rExem)A
both tend to zlero as t — oo. This proves (4.11). O l
The following two corollaries are immediate from Theorem 3 and its proof.
Corollary 3. Let p,q € C,q and suppose
/OC Ip(2) — q(¢)|At < 0. (4.12)

fo
Suppose x| and x, are two linearly independent solutions of (1.1) satisfying

M = sup \/x3(1) + x3() < oo.

=1
Then, with the notation from the proof of Theorem 3, any solution y of (4.7) satisfies the growth condition
()] < Mée gy (8 10)-
Corollary 4. Suppose (4.12) holds. If all solutions of (1.1) are bounded, then so are all solutions of (4.7).

The continuous version of the above boundedness theorem is given in [2, Theorem 2 in Chapter 6]. Now we
consider #*-boundedness of solutions of (1.1) and (4.7). We say that

00 1/u
e Pnoo) if 1], = { / If(r)l“Af} < oo

provided « € [1,00), and for o = co we write
f e L=t 00) if |Ifll:= sup |f(1)] < oo

teTN(t,00)

The next result is about a € (1,00), and its continuous version can be found in [2, Exercise 6.8.3]. The subse-
quent corollary with o = 2 is contained for differential equations in [2, Theorem 6 in Chapter 6]. Finally, when
o =1, we give a result corresponding to the continuous result from [2, Exercise 6.8.5].

Theorem 4. Let p,q € Cq and suppose v := p — q is bounded. Let o, f > 1 with 1/o. + 1/ = 1. If all solutions x of
(1.1) satisfy x* € L*(ty,00) N L (19, 00), then all solutions y of (4.7) satisfy y° € L*(ty,00) N LP (15, 0).

Proof. With the setting and notation from Lemma 4, we arrive at (4.9). Therefore, by taking into account that
there exists ¢3 > 0 such that |r(7)| < ¢; for all 1 € T, we obtain

w(e(@)] < lerxi(a(0)] + |eaxa(a(0))] + [exi(a |03/ ea(a(2))y(a(7))|AT
+ |exa(a(1))]es /tt i (a(2)y(a(z))|Az.

Now we use the well-known inequality
(a+b) <2 a*+b*) fora,b>0and o> 1

twice, then use Holder’s inequality [4, Theorem 6.13], and then put ¢, := [|x{[|; and ¢s := [|x[|; to obtain

o) < 2D (e (0O + leaxa((@)[) + 20 Vexs(o(0))es { / fea(o >>|Ar}

+ 22V exy (a(1))es|” {/ |x1 (o ))|Ar}

<220 (Jerxi (o ()" + |eaxa(a (1)) + 22V {|ecsxi (a(1))es|” + |ecaxa(a(2))eal}S(2),
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/\y NI Az

By integrating the above inequality and putting ¢ = ||x]||, and ¢; = ||x3||,, we obtain

() <es+ o /,[Hxl (@I + Ixa(a(0))["]S(x) A,

0

where

where ¢g = 22(“*])(|c1c6|“ + |eac7]*) and ¢g = 22~ Dmax{ |ceses|”,|ceqes|}. By Corollary 1 and Lemma 2, we find

5(0) < cxaprsgr(10) < csexp {e [ Tn(o()I" + ba(ate)) e}

fo

and so

/ (o (7)) ["At < cge 6

to
so that we have indeed y” € #*(t), c0). By a duality argument, it is clear that y* € £ (¢, 00), too, finishing the
proof. [

Corollary 5. Let p,q € C.q and suppose p — q is bounded. If all solutions x of (1.1) satisfy x° € L*(ty,0), then
all solutions y of (4.7) satisfy y* € L*(ty,0).

Proof. Set « = =2 in Theorem 4. [

Theorem 5. Let p,qe€ Cq and suppose p—q is bounded. If all solutions x of (1.1) satisfy
X7 € L (ty,00) N L (ty, 00), then all solutions y of (4.7) satisfy y° € L (ty,00) N L>(ty, 00).

Proof. With the setting and notation from Lemma 4, we arrive at (4.9). Therefore, by taking into account that
there exists ¢; > 0 such that |r(¢)| < ¢; for all 1 € T, we obtain

(e(®)] < lewxi(a(2))] + |eaxa(a ()| + |exi (o |Cs/ P2 (o a(1))|At
+ lexa(a(2))]es /t[ xi(a(2))y(a(1))|Ac
< Jewxi (a(6)] + [eaxa(a ()| + |exi(a(t))les xal / lv(ea(c))|AT

+ lexa(o(@))leshal.. / ¥(0(2))|Ac

1) + Ms(t / [v(a(7))|At,

where we put

(O] + X5 (0)]-

M = max {|c1], [eal, [eles[lxa]l . eleslxill ) and (1) =

Therefore, by Lemma 1, we have

lv(a(2))] < Ms(t) +Ms(l)/ Ms(t)eys(t, (1)) At = Ms(t) + Ms(2){ewms (2, t0) — ens(t, 1)} = Ms(2)ens(2,10),

where we used the formula [4, Theorem 2.39]

/ p(tey(c,a(t))At = e,(c,a) —e,(c, b).
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Now we can conclude the following two statements. First, using Lemma 2, we obtain

(a(0))] < M(||x1 ]| + [l e Pl

$0 )7 € ¥*(ty,0). Second, again using Lemma 2, we arrive at

/ ly(o(7))]|AT < / Ms(t)ens(t,10) AT = epg(t,80) — 1 < epg(t, 29) < MU+,

50 37 € L' (ty, 00). Altogether, y7 € L' (ty,00) N L>(ty,00). O

5. Nonlinear dynamic equations

Now we consider nonlinear equations of the form (1.2) and show the following result.

Theorem 6. Consider the equation

(P(0)x")* +q(0)(f 0x*) = (1)

and assume the following:

L p(t) = 0>0 forall t = ty

2. q € Cyq satisfies (4.4);

3. f: R — R satisfies |f(x)| < L|x|* for x € R, where L>0 and o €[0,1];
4. ge Cyq

Then

x(a(t)) = O(o(t) +0o(t) /t[a(t) - a(r)]|g(r)|Af) as t — oo.

fo

Proof. We integrate (5.1) between ¢, and ¢ to arrive at

() =1’“;m(” v | g() - g(e)f (x(o()))]Ax.

Integrating this equation again between ¢, and o(¢), we obtain

a(t) T a(t) s
x(o(£)) = x(t0) + plio) (1) / %* / }% / [¢(1) — q(2)f (x((0)))]AcAs.

We now use the assumptions, Lemma 3, and the elementary inequality
Ix|* <1+ x| forxeRandac€l0,1]
to find

x2(to o(t) ps
5 / / lq()|[x(a (7)) " AtAs = |x(t)| + 1 —&—w[a(ﬂ — o]
5/ —o@lls= ‘Af+5/ o(2)]lg(0)] x(o() At

<1 +o(0) + 4] + 22 /| 11+ x(o(2)) 1A,

1511
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where we put

A(t>=[[o—(f) (0)]lg(t)|Ac and c:max{|x(t0)|+l,M%}.

Now, by Lemmas 1 and 2, we conclude

x(a(0)] + 1 < e[l + A(1) + o La(t /C +a(D)]lg(7)lesigiors (2, (7)) At
c[l+A(t) + a( L t/c +A(7) + a(7)]]|q(z )|exp{ /|q )o(s )AS}A
eMcLo(t)

el + A() + o()] + S / 114+ A(2) + o()] (<) |Ax,

fo

where the limit

M_(S/ 7)|AT

is finite due to (4.4). Noticing that 0 < A(7) < A4(¢) whenever 7 < ¢, we find

Ix(a(2))] Ix(a(r))] + 1 c c eMcL ' [1+A(z) a(1)
o) + oAl S o) + oA So0) TTr Al T [1 a0 T Trap)leeAe
<2c+ 2ecl /t a(7)|q(7)|At < 2¢ + 2cMe,

which shows that (5.2) holds. [
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