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1. INTRODUCTION

Discrete analytic (or holomorphic) functions being analytic functions on the

Gaussian integers Z[i] = Z + iZ were introduced by Isaacs [13]. He introduced two

kinds of difference equations, both of which are discrete counterparts of the Cauchy–

Riemann equations in one complex variable. He thus defined two classes of discrete

analytic functions and called them monodiffric functions of the first and second kind,

respectively. In [14], he continued the study of monodiffric functions of the first kind.

In [11], Ferrand investigated monodiffric functions of the second kind, which she called

“preholomorphic”. Later, this class was studied quite extensively by Duffin [9], Duffin

and Peterson [10], Zeilberger [16], Zeilberger and Dym [17], and others.

In this paper we introduce a concept of analytic functions on an arbitrary time

scale complex plane T1 + iT2, where T1 and T2 are arbitrary time scales. Note that a
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time scale is an arbitrary nonempty closed subset of the reals R, which in particular

may be the reals R itself as well as the integers Z. Therefore we unify and extend

the concepts of continuous and discrete analytic functions. For a general introduction

to the calculus of time scales, we refer the reader to the original works of Aulbach

and Hilger [1, 2, 3, 12] and the textbooks by Bohner and Peterson [7, 8]. Bernd

Aulbach, to whom this paper is dedicated, can be considered, together with Stefan

Hilger, as the founder of time scales calculus. From the beginning until his sudden

and unexpected death on January 14, 2005, Bernd Aulbach supported and followed

with close interest the activities of time scales research.

The paper is organized as follows. In Section 2, we follow [4] and present a defini-

tion of completely delta differentiability for functions of two real time scale variables,

needed in the sequel. In Section 3, we introduce a concept of delta differentiability

(or delta analyticity) for complex-valued functions of a complex time scale variable

and derive a time scale version of the classical Cauchy–Riemann equations for usual

analytic functions of a (continuous) complex variable. We show that our definition

of delta analyticity coincides in the case R + iR = C with the usual analyticity and

in the case of the Gaussian integers Z + iZ = Z[i] with the definition of monodiffric

functions of the first kind given by Isaacs. Section 4 treats curves in the time scale

complex plane and offers an integral formula for computing their lengths. In Section

5, we define complex line delta and nabla integrals and give sufficient conditions for

the existence of these integrals and also provide formulas for their evaluation. Next

we present several properties of complex line delta integrals. Finally, in Section 6,

we establish for complex delta analytic functions a version of the classical Cauchy

integral theorem. To do so, the concepts of connectedness, domain, and fence of a set

are introduced for sets in the time scale complex plane.

2. FUNCTIONS OF TWO REAL TIME SCALE VARIABLES

Let T1 and T2 be time scales. Let us set T1 × T2 = {(x, y) : x ∈ T1, y ∈ T2}.
The set T1 × T2 is a complete metric space with the metric (distance) d defined by

d ((x, y), (x′, y′)) =
√

(x− x′)2 + (y − y′)2 for (x, y), (x′, y′) ∈ T1 × T2.

For a given δ > 0, the δ-neighborhood Uδ(x0, y0) of a given point (x0, y0) ∈ T1 × T2

is the set of all points (x, y) ∈ T1×T2 such that d((x0, y0), (x, y)) < δ. Let σ1 and σ2

be the forward jump operators for T1 and T2, respectively. Let u : T1 × T2 → R be

a function. The first order partial delta derivatives of u at a point (x0, y0) ∈ Tκ1 ×Tκ2
are defined to be

∂u(x0, y0)

∆1x
= lim

x→x0,x 6=σ1(x0)

u(σ1(x0), y0)− u(x, y0)

σ1(x0)− x
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and

∂u(x0, y0)

∆2y
= lim

y→y0,y 6=σ2(y0)

u(x0, σ2(y0))− u(x0, y)

σ2(y0)− y
.

Definition 2.1 (see [4]). We say that a function u : T1 × T2 → R is completely

delta differentiable at a point (x0, y0) ∈ Tκ1 × Tκ2 if there exist numbers A1 and A2

independent of (x, y) ∈ T1 × T2 (but, in general, dependent on (x0, y0)) such that

u(x0, y0)− u(x, y) = A1(x0 − x) + A2(y0 − y) + α1(x0 − x) + α2(y0 − y),(2.1)

u(σ1(x0), y0)− u(x, y) = A1[σ1(x0)− x] + A2(y0 − y)(2.2)

+β11[σ1(x0)− x] + β12(y0 − y),

u(x0, σ2(y0))− u(x, y) = A1(x0 − x) + A2[σ2(y0)− y](2.3)

+β21(x0 − x) + β22[σ2(y0)− y]

for all (x, y) ∈ Uδ(x0, y0), where δ > 0 is sufficiently small, αj = αj(x0, y0;x, y) and

βjk = βjk(x0, y0;x, y) are defined on Uδ(x0, y0) such that they are equal to zero at

(x, y) = (x0, y0) and

lim
(x,y)→(x0,y0)

αj(x0, y0;x, y) = lim
(x,y)→(x0,y0)

βjk(x0, y0;x, y) = 0

for j, k ∈ {1, 2}.

Note that in case T1 = T2 = Z, the neighborhood Uδ(x0, y0) contains the single

point (x0, y0) for δ < 1. Therefore, in this case, the condition (2.1) disappears, while

the conditions (2.2) and (2.3) hold with βjk = 0 and with

A1 = u(x0 + 1, y0)− u(x0, y0) =
∂u(x0, y0)

∆1x

and

A2 = u(x0, y0 + 1)− u(x0, y0) =
∂u(x0, y0)

∆2y
.

This shows that each function u : Z × Z → R is completely delta differentiable at

every point.

It follows from Definition 2.1 that if the function u : T1 × T2 → R is completely

delta differentiable at the point (x0, y0) ∈ Tκ1 ×Tκ2 , then it is continuous at that point

and has at (x0, y0) the first order partial delta derivatives equal to A1 and A2, namely

∂u(x0, y0)

∆1x
= A1 and

∂u(x0, y0)

∆2y
= A2.

Remark 2.2. In general, the product of two completely delta differentiable functions

need not be completely delta differentiable.
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3. FUNCTIONS OF A COMPLEX TIME SCALE VARIABLE.

CAUCHY–RIEMANN EQUATIONS

For given time scales T1 and T2, let us set

(3.1) T1 + iT2 = {z = x+ iy : x ∈ T1, y ∈ T2} ,

where i =
√
−1 is the imaginary unit. The set T1 + iT2 is called the time scale

complex plane and is a complete metric space with the metric d defined by

(3.2) d(z, z′) = |z−z′| =
√

(x− x′)2 + (y − y′)2, z = x+iy, z′ = x′+iy′ ∈ T1+iT2.

Any function f : T1 + iT2 → C can be represented in the form

f(z) = u(x, y) + iv(x, y) for z = x+ iy ∈ T1 + iT2,

where u : T1 × T2 → R is the real part of f and v : T1 × T2 → R is the imaginary

part of f .

Let σ1 and σ2 be the forward jump operators for T1 and T2, respectively. For

z = x+ iy ∈ T1 + iT2, let us set

zσ1 = σ1(x) + iy and zσ2 = x+ iσ2(y).

Definition 3.1. We say that a complex-valued function f : T1 + iT2 → C is delta

differentiable (or delta analytic) at a point z0 = x0 + iy0 ∈ Tκ1 + iTκ2 if there exists a

complex number A (depending in general on z0) such that

f(z0)− f(z) = A(z0 − z) + α(z0 − z)(3.3)

f(zσ1
0 )− f(z) = A(zσ1

0 − z) + β(zσ1
0 − z)(3.4)

f(zσ2
0 )− f(z) = A(zσ2

0 − z) + γ(zσ2
0 − z)(3.5)

for all z ∈ Uδ(z0), where Uδ(z0) is a δ-neighborhood of z0 in T1 + iT2, α = α(z0, z),

β = β(z0, z) and γ = γ(z0, z) are defined for z ∈ Uδ(z0), they are equal to zero at

z = z0, and

lim
z→z0

α(z0, z) = lim
z→z0

β(z0, z) = lim
z→z0

γ(z0, z) = 0.

Then the number A is called the delta derivative (or ∆-derivative) of f at z0 and is

denoted by f∆(z0).

Theorem 3.2. Let the function f : T1 + iT2 → C have the form

f(z) = u(x, y) + iv(x, y) for z = x+ iy ∈ T1 + iT2.

Then a necessary and sufficient condition for f to be ∆-differentiable (as a function

of the complex variable z) at the point z0 = x0 + iy0 ∈ Tκ1 + iTκ2 is that the functions
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u and v be completely ∆-differentiable (as functions of the two real variables x ∈ T1

and y ∈ T2) at the point (x0, y0) and satisfy the Cauchy–Riemann equations

(3.6)
∂u

∆1x
=

∂v

∆2y
and

∂u

∆2y
= − ∂v

∆1x

at (x0, y0). If these equations are satisfied, then f∆(z0) can be represented in any of

the forms

(3.7) f∆(z0) =
∂u

∆1x
+ i

∂v

∆1x
=

∂v

∆2y
− i ∂u

∆2y
=

∂u

∆1x
− i ∂u

∆2y
=

∂v

∆2y
+ i

∂v

∆1x
,

where the partial derivatives are evaluated at (x0, y0).

Proof. First we show necessity. Assume that f is ∆-differentiable at z0 = x0 + iy0

with f∆(z0) = A. Then (3.3)–(3.5) are satisfied. Letting

f = u+ iv, A = A1 + iA2, α = α1 + iα2, β = β1 + iβ2, γ = γ1 + iγ2,

we get from (3.3)–(3.5), equating the real and imaginary parts of both sides in each

of these equations,

u(x0, y0)− u(x, y) = A1(x0 − x)− A2(y0 − y) + α1(x0 − x)− α2(y0 − y)

u(σ1(x0), y0)− u(x, y) = A1[σ1(x0)− x]− A2(y0 − y)

+β1[σ1(x0)− x]− β2(y0 − y)

u(x0, σ2(y0))− u(x, y) = A1(x0 − x)− A2[σ2(y0)− y]

+γ1(x0 − x)− γ2[σ2(y0)− y]

and

v(x0, y0)− v(x, y) = A2(x0 − x) + A1(y0 − y) + α2(x0 − x) + α1(y0 − y)

v(σ1(x0), y0)− v(x, y) = A2[σ1(x0)− x] + A1(y0 − y)

+β2[σ1(x0)− x] + β1(y0 − y)

v(x0, σ2(y0))− v(x, y) = A2(x0 − x) + A1[σ2(y0)− y]

+γ2(x0 − x) + γ1[σ2(y0)− y].

Hence, taking into account that αj → 0, βj → 0, and γj → 0 as (x, y) → (x0, y0),

we get that the functions u and v are completely ∆-differentiable (as functions of the

two real variables x ∈ T1 and y ∈ T2) and that

A1 =
∂u(x0, y0)

∆1x
, −A2 =

∂u(x0, y0)

∆2y
, A2 =

∂v(x0, y0)

∆1x
, A1 =

∂v(x0, y0)

∆2y
.

Therefore the Cauchy–Riemann equations (3.6) hold and we have the formulas (3.7).

Now we show sufficiency. Assume that the functions u and v, where f = u+ iv,

are completely ∆-differentiable at the point (x0, y0) and that the Cauchy–Riemann
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equations (3.6) hold. Then we have

u(x0, y0)− u(x, y) = A′1(x0 − x) + A′2(y0 − y) + α′1(x0 − x) + α′2(y0 − y)

u(σ1(x0), y0)− u(x, y) = A′1[σ1(x0)− x] + A′2(y0 − y)

+β′11[σ1(x0)− x] + β′12(y0 − y)

u(x0, σ2(y0))− u(x, y) = A′1(x0 − x) + A′2[σ2(y0)− y]

+β′21(x0 − x) + β′22[σ2(y0)− y]

and

v(x0, y0)− v(x, y) = A′′1(x0 − x) + A′′2(y0 − y) + α′′1(x0 − x) + α′′2(y0 − y)

v(σ1(x0), y0)− v(x, y) = A′′1[σ1(x0)− x] + A′′2(y0 − y)

+β′′11[σ1(x0)− x] + β′′12(y0 − y)

v(x0, σ2(y0))− v(x, y) = A′′1(x0 − x) + A′′2[σ2(y0)− y]

+β′′21(x0 − x) + β′′22[σ2(y0)− y],

where α′j, β
′
ij and α′′j , β

′′
ij tend to zero as (x, y)→ (x0, y0) and

A′1 =
∂u(x0, y0)

∆1x
=
∂v(x0, y0)

∆2y
= A′′2 =: A1

and

−A′2 = −∂u(x0, y0)

∆2y
=
∂v(x0, y0)

∆1x
= A′′1 =: A2.

Therefore

f(z0)− f(z) = (A1 + iA2)(z0 − z) + α(z0 − z),

f(zσ1
0 )− f(z) = (A1 + iA2)(zσ1

0 − z) + β(zσ1
0 − z),

f(zσ2
0 )− f(z) = (A1 + iA2)(zσ2

0 − z) + γ(zσ2
0 − z),

where

α = (α′1 + iα′′1)
x0 − x
z0 − z

+ (α′2 + iα′′2)
y0 − y
z0 − z

,

β = (β′11 + iβ′′11)
σ1(x0)− x
zσ1

0 − z
+ (β′12 + iβ′′12)

y0 − y
zσ1

0 − z
,

γ = (β′21 + iβ′′21)
x0 − x
zσ2

0 − z
+ (β′22 + iβ′′22)

σ2(y0)− y
zσ2

0 − z
.

Since

|α| ≤ |α′1 + iα′′1|
∣∣∣∣x0 − x
z0 − z

∣∣∣∣+ |α′2 + iα′′2|
∣∣∣∣y0 − y
z0 − z

∣∣∣∣
≤ |α′1 + iα′′1|+ |α′2 + iα′′2| ≤ |α′1|+ |α′′1|+ |α′2|+ |α′′2|,

we have α→ 0 as z → z0. Similarly, β → 0 and γ → 0 as z → z0. Consequently, f is

∆-differentiable at z0 and f∆(z0) = A1 + iA2.
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Remark 3.3. It can be shown (see [4]) that, if the functions u, v : T1 × T2 → R

are continuous and have the first order partial delta derivatives ∂u(x,y)
∆1x

, ∂u(x,y)
∆2y

, ∂v(x,y)
∆1x

,
∂v(x,y)

∆2y
in some δ-neighborhood Uδ(x0, y0) of the point (x0, y0) ∈ Tκ1 × Tκ2 and if these

derivatives are continuous at (x0, y0), then u and v are completely ∆-differentiable at

(x0, y0). Therefore in this case, if in addition the Cauchy–Riemann equations (3.6)

are satisfied, then f(z) = u(x, y) + iv(x, y) is ∆-differentiable at z0 = x0 + iy0.

Example 3.4. (i) The function f(z) =constant on T1 + iT2 is ∆-analytic every-

where and f∆(z) = 0.

(ii) The function f(z) = z on T1 + iT2 is ∆-analytic everywhere and f∆(z) = 1.

(iii) Consider the function

f(z) = z2 = (x+ iy)2 = x2 − y2 + i2xy on T1 + iT2.

Hence u(x, y) = x2 − y2, v(x, y) = 2xy, and

∂u(x, y)

∆1x
= x+ σ1(x),

∂u(x, y)

∆2y
= −y − σ2(y),

∂v(x, y)

∆1x
= 2y,

∂v(x, y)

∆2y
= 2x.

Therefore the Cauchy–Riemann equations become

x+ σ1(x) = 2x and − y − σ2(y) = −2y,

which hold simultaneously if and only if σ1(x) = x and σ2(y) = y simultaneously.

It follows that the function f(z) = z2 is not ∆-analytic at each point of Z+ iZ.

So, the product of two ∆-analytic functions need not be ∆-analytic.

(iv) The function f(z) = x2− y2 + i2(x+ 1/2)(y+ 1/2) is ∆-analytic everywhere on

Z+ iZ. This function is not analytic anywhere on R+ iR = C.

(v) The function f(z) = x2 − y2 + ix(2y + 1) is ∆-analytic everywhere on R+ iZ.

Example 3.5. (i) If T1 = T2 = R, then T1+iT2 = R+iR = C is the usual complex

plane and the three conditions (3.3)–(3.5) of Definition 3.1 coincide and reduce to

the classical definition of analyticity (differentiability) of functions of a complex

variable [15].

(ii) Let T1 = T2 = Z. Then T1 + iT2 = Z+ iZ = Z[i] is the set of Gaussian integers.

The neighborhood Uδ(z0) of z0 contains the single point z0 for δ < 1. Therefore,

in this case, the condition (3.3) disappears, while the conditions (3.4) and (3.5)

reduce to the single condition

(3.8)
f(z0 + 1)− f(z0)

1
=
f(z0 + i)− f(z0)

i

with f∆(z0) equal to the left (and hence also to the right) hand side of (3.8).

The condition (3.8) coincides with the definition of monodiffric functions of the

first kind introduced earlier by Isaacs [13]. Note that in [13] Isaacs has defined
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also monodiffric functions of the second kind, in which the condition

f(z0 + 1 + i)− f(z0)

1 + i
=
f(z0 + i)− f(z0 + 1)

i− 1

is required instead of (3.8). A time scales counterpart of monodiffric functions

of the second kind will be considered by the authors elsewhere.

4. CURVES IN THE TIME SCALE COMPLEX PLANE

Let T be a time scale with the forward jump, backward jump, and delta differ-

entiation operators σ, ρ, and ∆, respectively. Given the points a, b ∈ T with a ≤ b,

let [a, b] = {t ∈ T : a ≤ t ≤ b} be the closed interval in T. Further, let T1 and T2

be two other time scales and define T1 + iT2 as in (3.1). Let σi, ρi, and ∆i be the

forward jump, backward jump, and delta differentiation operators for Ti, i ∈ {1, 2},
respectively.

Definition 4.1. A complex function

(4.1) z = λ(t) = ϕ(t) + iψ(t), t ∈ [a, b] ⊂ T,

where ϕ : [a, b] → T1 and ψ : [a, b] → T2 are continuous (in the time scale topology)

functions, is said to define a (time scale continuous) curve Γ in the time scale complex

plane T1 + iT2.

The values of the function λ are called the points of the curve, and the set of

points of the curve, i.e., the range of λ, will often be referred to as simply the curve

(when no ambiguity can arise). In particular, the points z0 = λ(a) and z1 = λ(b) are

called the initial and final points of the curve, respectively, and z0, z1 are called the

end points of the curve. The initial and final points of a curve may coincide, in which

case the curve is said to be closed. The time scale variable t is called the parameter

of the curve, and the equation (4.1), mapping the values of the parameter onto the

points of the curve, is called the parametric equation of the curve. We can also think

of Γ as an oriented curve, in the sense that a point z′ = λ(t′) ∈ Γ is regarded as

distinct from a point z′′ = λ(t′′) ∈ Γ if t′ 6= t′′ and as preceding z′′ if t′ < t′′. The

oriented curve Γ is then said to be “traversed in the direction of increasing t”. It

will always be clear from the context whether Γ is a curve in the set-theoretic sense,

i.e., the continuous image of a closed time scale interval, or an oriented curve as just

described. Two curves Γ1 and Γ2 with equations

x = ϕ1(t), y = ψ1(t), t ∈ [a, b] ⊂ T

and

x = ϕ2(τ), y = ψ2(τ), τ ∈ [α, β] ⊂ T̃,

respectively, are regarded as identical if the equation of one curve can be transformed

into the equation of the other by means of a continuous (strictly) increasing change
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of parameter, i.e., if there is a continuous increasing function τ = h(t), t ∈ [a, b], with

the range [α, β], such that

ϕ2(h(t)) = ϕ1(t), ψ2(h(t)) = ψ1(t), t ∈ [a, b].

(Then, of course, ϕ1(h−1(τ)) = ϕ2(τ) and ψ1(h−1(τ)) = ψ2(τ) for τ ∈ [α, β], where

h−1 is the continuous inverse of the function h.) Then we say that the two curves

have the same direction. We say that the two curves have opposite directions if the

function h above is decreasing. In this case, the initial point of Γ1 is the same as the

final point of Γ2, and vice versa. The curve differing from Γ only by the direction in

which it is traversed will be denoted by −Γ. Let the curve (4.1) be nonclosed, i.e.,

λ(a) 6= λ(b). If the same point z corresponds to more than one parameter value in the

(time scale) interval [a, b], then we say that z is a multiple point (or self-intersection

point) of the curve (4.1). A nonclosed curve with no multiple points is called a simple

curve (or Jordan curve). If the curve (4.1) is closed, then it is called a simple closed

curve if it has no multiple points on the half-open interval [a, b).

Let Γ be a (time scale) continuous curve with equation (4.1). A partition of [a, b]

is any finite ordered set

(4.2) P = {t0, t1, . . . , tn} ⊂ [a, b], where a = t0 < t1 < · · · < tn = b.

Let us set zk = λ(tk) for k ∈ {0, 1, . . . , n} and

(4.3) `(Γ, P ) =
n∑
k=1

|zk − zk−1| =
√

[ϕ(tk)− ϕ(tk−1)]2 + [ψ(tk)− ψ(tk−1)]2.

Definition 4.2. The curve Γ is said to be rectifiable with length `(Γ) if

sup {`(Γ, P ) : P is a partition of [a, b]} =: `(Γ) <∞,

where the least upper bound is taken over all possible partitions (4.2). If the supre-

mum does not exist, the curve is said to be nonrectifiable. In this case, Γ is considered

to have no length at all (or, if preferred, infinite length).

The following theorem gives a sufficient condition for rectifiability of curves and

a formula for evaluating their lengths.

Theorem 4.3. Let the functions ϕ and ψ be continuous on [a, b] and ∆-differentiable

on [a, b). If their ∆-derivatives ϕ∆ and ψ∆ are bounded and ∆-integrable over [a, b),

then the curve Γ defined by the parametric equation (4.1) is rectifiable and its length

`(Γ) can be evaluated by the formula

`(Γ) =

∫ b

a

∣∣λ∆(t)
∣∣∆t =

∫ b

a

√
[ϕ∆(t)]2 + [ψ∆(t)]2∆t.

For a proof of Theorem 4.3 see [6].
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5. COMPLEX LINE DELTA AND NABLA INTEGRALS

Let Γ be a ∆-smooth curve (i.e., Γ satisfies the conditions of Theorem 4.3) with

equation (4.1) and let

f(z) = u(x, y) + iv(x, y)

be a complex function, defined and continuous on Γ (this means that for each z ∈ Γ

and each ε > 0 there exists δ > 0 such that |f(z′) − f(z)| < ε whenever z′ ∈ Γ and

|z′ − z| < δ). Let P as in (4.2) be a partition of [a, b] and let

zk = λ(tk) = ϕ(tk) + iψ(tk), k ∈ {0, 1, . . . , n}.

Take any τk ∈ [tk−1, tk) for k ∈ {1, 2, . . . , n} and put

ξk = λ(τk) = ϕ(τk) + iψ(tk), k ∈ {1, 2, . . . , n}.

Next, we introduce the integral sum

(5.1) S =
n∑
k=1

f(ξk)(zk − zk−1).

For every δ > 0 there exists (see [8, Lemma 5.7] at least one partition P as in (4.2) such

that for each k ∈ {1, 2, . . . , n} either tk − tk−1 ≤ δ or tk − tk−1 > δ and σ(tk−1) = tk,

where σ denotes the forward jump operator in T. We denote by Pδ([a, b]) the set of

all such partitions P of [a, b].

Definition 5.1. We say that a complex number I is the line delta integral of the

function f along the curve Γ if for each ε > 0 there exists δ > 0 such that |S− I| < ε

for every integral sum S of f corresponding to a partition P ∈ Pδ([a, b]) independent

of the way in which we choose τk ∈ [tk−1, tk) for k ∈ {1, 2, . . . , n}. We denote the

number I, symbolically, by
∫

Γ
f(z)∆z and write limδ→0 S = I.

The following theorem gives conditions sufficient for the existence of complex line

delta integrals.

Theorem 5.2. Suppose that the curve Γ is given by the parametric equation (4.1),

where ϕ and ψ are continuous on [a, b] and ∆-differentiable on [a, b). If ϕ∆ and ψ∆

are bounded and ∆-integrable over [a, b) and if the function f is continuous on Γ,

then the line delta integral of f along the curve Γ exists and can be computed by the

formula

(5.2)

∫
Γ

f(z)∆z =

∫ b

a

f (λ(t))λ∆(t)∆t.

Proof. We have

S =
n∑
k=1

f(ξk)(zk − zk−1)
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=
n∑
k=1

[u(ϕ(τk), ψ(τk)) + iv(ϕ(τk), ψ(τk))] [ϕ(tk) + iψ(tk)− ϕ(tk−1)− iψ(tk−1)]

=
n∑
k=1

{u(ϕ(τk), ψ(τk)) [ϕ(tk)− ϕ(tk−1)]− v(ϕ(τk), ψ(τk)) [ψ(tk)− ψ(tk−1)]}

+i
n∑
k=1

{v(ϕ(τk), ψ(τk)) [ϕ(tk)− ϕ(tk−1)] + u(ϕ(τk), ψ(τk)) [ψ(tk)− ψ(tk−1)]} .

Therefore we see that the real and imaginary parts of S are both integral sums for real

functions of the variables x and y, introduced in [6] for defining line delta integrals

of the form ∫
Γ

M(x, y)∆1x+N(x, y)∆2y,

where the first sum is constructed for the pair of functions u and −v and for a given

partition P of [a, b] and the second sum for the pair v and u for the same partition.

Under the conditions of the theorem on Γ and f , it follows from the above calculation

by the sufficient conditions given in [6] for the existence of real line delta integrals

that the line delta integral of f along Γ exists and satisfies∫
Γ

f(z)∆z =

∫
Γ

u(x, y)∆1x− v(x, y)∆2y + i

∫
Γ

v(x, y)∆1x+ u(x, y)∆2y

=

∫ b

a

[
u(ϕ(t), ψ(t))ϕ∆(t)− v(ϕ(t), ψ(t))ψ∆(t)

]
∆t

+i

∫ b

a

[
v(ϕ(t), ψ(t))ϕ∆(t) + u(ϕ(t), ψ(t))ψ∆(t)

]
∆t

=

∫ b

a

[u(ϕ(t), ψ(t)) + iv(ϕ(t), ψ(t))]
[
ϕ∆(t) + iψ∆(t)

]
∆t

=

∫ b

a

f (λ(t))λ∆(t)∆t,

i.e., (5.2) holds.

Example 5.3. If f(z) = 1, then we have

n∑
k=1

f(ξk)(zk − zk−1) =
n∑
k=1

(zk − zk−1) = zn − z0 = z′ − z0,

where z0 is the initial and z′ is the final point of the curve Γ. Thus
∫

Γ
∆z = z′ − z0.

In particular, if Γ is closed, then z′ = z0 and
∫

Γ
∆z = 0.

Similarly to complex line delta integrals introduced above, we can define complex

line nabla integrals. Let Γ be a curve defined by the parametric equation (4.1) and

let f(z) = u(x, y)+ iv(x, y) be a complex function defined on Γ. Having any partition

P of [a, b] of the form (4.2), put zk = λ(tk) for k ∈ {0, 1, . . . , n} and choosing any

τk ∈ (tk−1, tk], put ξk = λ(τk) for k ∈ {1, 2, . . . , n}. Note that in contrast to the
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delta integral, now we choose the intermediate point τk in (tk−1, tk] rather than in

[tk−1, tk). Then we form the integral sum S ′ =
∑n

k=1 f(ξk)(zk − zk−1) and define the

line nabla integral
∫

Γ
f(z)∇z to be the limit of S ′ as δ → 0 under the condition that

S ′ corresponds to P ∈ Pδ([a, b]).
The following theorem can be proved similarly than Theorem 5.2.

Theorem 5.4. Suppose that the curve Γ is given by the parametric equation (4.1),

where ϕ and ψ are continuous on [a, b] and ∇-differentiable on (a, b]. If ϕ∇ and ψ∇

are bounded and ∇-integrable over (a, b] and if the function f is continuous on Γ,

then the line nabla integral of f along the curve Γ exists and can be computed by the

formula ∫
Γ

f(z)∇z =

∫ b

a

f (λ(t))λ∇(t)∇t.

Now let us state some properties of complex line delta integrals. These properties

can be verified either by using the formula (5.2) or by using the definition of a complex

line delta integral as the limit of integral sums. In each case, we assume that Γ is a

curve satisfying the conditions indicated in Theorem 5.2 and that f is defined and

continuous on Γ.

Property 1. Let Γ satisfy the conditions of Theorems 5.2 and 5.4. If we denote by

−Γ the curve Γ traversed in the opposite direction, then∫
Γ

f(z)∆z = −
∫
−Γ

f(z)∇z.

Property 2. Suppose that the curve Γ is composed from the curves Γ1,Γ2, . . . ,Γm

in such a way that the final point of Γk coincides with the initial point of Γk+1 for

k ∈ {1, 2, . . . ,m− 1}. Then we have∫
Γ

f(z)∆z =
m∑
k=1

∫
Γk

f(z)∆z.

Property 3. Let f1, . . . , fm be arbitrary complex functions which are defined and

continuous on Γ, and let c1, . . . , cm ∈ C. Then∫
Γ

m∑
k=1

ckfk(z)∆z =
m∑
k=1

ck

∫
Γ

fk(z)∆z.

Property 4. We have ∣∣∣∣∫
Γ

f(z)∆z

∣∣∣∣ ≤ ∫
Γ

|f(z)|∆`,

where in the right-hand side stands the real line delta integral of the first type (see

[6]) of the function |f | along the curve Γ. Hence, as a corollary, we have∣∣∣∣∫
Γ

f(z)∆z

∣∣∣∣ ≤ (sup
Γ
|f(z)|

)
`(Γ),

where `(Γ) denotes the length of the curve Γ.
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Property 5. If the functions fn for n ∈ N are continuous on Γ and if the series∑∞
n=1 fn(z) converges uniformly on Γ, then

∫
Γ

∞∑
n=1

fn(z)∆z =
∞∑
n=1

∫
Γ

fn(z)∆z.

Example 5.5. Any ordered collection of complex numbers {z0, z1, . . . , zn} determines

an oriented (time scale) curve Γ in C, with the parametric equation

z = λ(t), t ∈ [0, n] ⊂ Z,

where λ(k) = zk for k ∈ [0, n] = {0, 1, . . . , n}. For any function f : Γ→ C we have∫
Γ

f(z)∆z =
n∑
k=1

f (λ(k − 1)) [λ(k)− λ(k − 1)] =
n∑
k=1

f(zk−1)(zk − zk−1)

and ∫
Γ

f(z)∇z =
n∑
k=1

f (λ(k)) [λ(k)− λ(k − 1)] =
n∑
k=1

f(zk)(zk − zk−1).

The curve −Γ is given by the parametric equation

z = λ1(t), t ∈ [0, n] ⊂ Z,

where λ1(t) = λ(n− t). Therefore∫
−Γ

f(z)∇z =
n∑
k=1

f (λ1(k)) [λ1(k)− λ1(k − 1)] =
n∑
k=1

f(zn−k)(zn−k − zn−k+1)

=
n∑
j=1

f(zj−1)(zj−1 − zj) = −
n∑
j=1

f(zj−1)(zj − zj−1) = −
∫

Γ

f(z)∆z,

and we have checked Property 1 of the integral given above, in this particular case.

Remark 5.6. We call the curve given by (4.1) piecewise ∆-smooth if ϕ and ψ are

continuous on [a, b] and there is a partition a = c0 < c1 < · · · < cm = b of [a, b] such

that ϕ and ψ have bounded and ∆-integrable ∆-derivatives on each of the intervals

[ck−1, ck), k ∈ {1, 2, . . . ,m}. In case of a piecewise ∆-smooth curve Γ, it is natural

to define complex line delta integrals along this curve as sums of line delta integrals

along all ∆-smooth parts constituting the curve Γ. Then the equality (5.2) holds for

piecewise ∆-smooth curves Γ as well. This equality is valid also in case when the

function f is only piecewise continuous along the curve Γ. A similar remark can be

made concerning the line nabla integrals.
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6. A TIME SCALE VERSION OF CAUCHY’S INTEGRAL THEOREM

Let T1 and T2 be two given time scales and T1 + iT2 be the time scale complex

plane defined in (3.1). Since T1 and T2 are closed subsets of R, the set T1 + iT2 is a

complete metric space with the metric defined in (3.2). Consequently, according to

the well-known theory of general metric spaces, we have for T1 + iT2 the fundamental

concepts such as open balls (disks), neigborhoods of points, open sets, closed sets,

compact sets, boundary of a set, and so on. There is also the concept of continuous

curve for general metric spaces and associated with it the concept of connectedness

(arcwise connectedness). Namely, if M is a metric space, then any continuous map-

ping h : [a, b]→M of the real line interval [a, b] into the metric space M is called a

(continuous) curve inM. Above, in Section 4, we generalized the concept of continu-

ous curve taking as [a, b] an interval of a time scale instead of the reals R. Accordingly,

we can generalize the concept of arcwise connectedness to T1 + iT2.

Definition 6.1. Let [a, b] be an interval in T1 with a, b ∈ T1 and y0 ∈ T2. The set

{z = x+ iy0 : x ∈ [a, b]}

is called a horizontal line segment in T1 + iT2 and denoted by AB, where A = a+ iy0

and B = b + iy0. Similarly, taking x0 ∈ T1 and [c, d] ⊂ T2, we define a vertical line

segment in T1 + iT2 as the set

{z = x0 + iy : y ∈ [c, d]}

and denote it by CD, where C = x0 + ic and D = x0 + id.

Definition 6.2. A finite sequence P1Q1, P2Q2, . . . , PnQn, each of whose term is a hor-

izontal or vertical line segment in T1 + iT2, is said to form a polygonal path (or broken

line) in T1 + iT2 with terminal points P1 and Qn if Q1 = P2, Q2 = P3, . . . , Qn−1 = Pn.

A set of points of T1 + iT2 is said to be connected if any two of its points are ter-

minal points of a polygonal path of points contained in the set. A component of a

set Ω ⊂ T1 + iT2 is a nonempty maximal connected subset of Ω. A nonempty open

connected set of points of T1 + iT2 is called a domain. A closed domain is a subset

in T1 + iT2 being the closure of a domain in T1 + iT2.

Suppose a < b are points in T1, c < d are points in T2, [a, b) is the half-closed

bounded interval in T1, and [c, d) is the half-closed bounded interval in T2. Let us

introduce a “rectangle” in T1 + iT2 by

(6.1) R = [a, b) + i[c, d) = {x+ iy : x ∈ [a, b), y ∈ [c, d)} .

Let us set

L1 = {x+ ic : x ∈ [a, b]} , L2 = {b+ iy : y ∈ [c, d]} ,
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L3 = {x+ id : x ∈ [a, b]} , L4 = {a+ iy : y ∈ [c, d]} .

Each of Lj for j ∈ {1, 2, 3, 4} is an oriented line segment; for example, the positive

orientation of L1 arises according to the increase of x from a to b and the positive

orientation of L2 arises according to the increase of y from c to d. The set (closed

curve)

Γ := L1 ∪ L2 ∪ (−L3) ∪ (−L4)

is called the positively oriented fence of R. Positivity of orientation of Γ means that

the rectangle R remains on the “left” side as we describe the fence curve Γ.

Definition 6.3. We say that E ⊂ T1 +iT2 is a set of the type ω if it is a connected set

in T1 + iT2 being the union of a finite number of rectangles of the form (6.1) that are

pairwise disjoint and adjoining to each other. Let E =
⋃m
k=1 Rk be a set of the type ω.

Let Γk be the positively oriented fence of the rectangle Rk. Let us set X =
⋃m
k=1 Γk.

Further, let X0 consist of a finite number of line segments each of which serves as

a common part of fences of two adjoining rectangles belonging to {R1, R2, . . . , Rm}.
Then the set Γ = X \X0 forms a positively oriented closed “polygonal curve”, which

we call the positively oriented fence of the set E (the set E remains on the “left” as

we describe the fence curve Γ).

Theorem 6.4 (Cauchy’s Integral Theorem). Let E ⊂ T1 + iT2 be a set of the type

ω and let Γ be its positively oriented fence. If a function f is delta analytic on E ∪ Γ

and f∆ is continuous on E ∪ Γ, then

(6.2)

∫
Γ

f(z)d∗z = 0,

where the “star line integral” on the left side in (6.2) denotes the sum of line delta

integrals of f taken over the line segment constituents of Γ directed to the right or

upwards and line nabla integrals of f taken over the line segment constituents of Γ

directed to the left or downwards.

Proof. Let us set f(z) = u(x, y) + iv(x, y). Then, as was shown above in the proof of

Theorem 5.2, we have

(6.3)

∫
Γ

f(z)d∗z =

∫
Γ

ud∗x− vd∗y + i

∫
Γ

vd∗x+ ud∗y.

Next, since f∆ is continuous on E ∪ Γ, the component functions u and v, along with

their first partial delta derivatives, are continuous on E ∪ Γ. Consequently, we can

apply Green’s formula (see [6] for Green’s formula and [5] for double integrals)∫
Γ

Md∗x+Nd∗y =

∫ ∫
E

(
∂N

∆1x
− ∂M

∆2y

)
∆1x∆2y
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to get from (6.3)∫
Γ

f(z)d∗z =

∫ ∫
E

(
− ∂v

∆1x
− ∂u

∆2y

)
∆1x∆2y + i

∫ ∫
E

(
∂u

∆1x
− ∂v

∆2y

)
∆1x∆2y.

In view of the Cauchy–Riemann equations (3.6), the integrands of these two double

delta integrals are zero throughout E. This completes the proof of (6.2).

Example 6.5. Let T1 = T2 = Z and z0 = x0 + iy0 be any point in Z + iZ. As the

set E ⊂ Z+ iZ we take the single point rectangle

(6.4) E = {z0} = {x+ iy : x ∈ [x0, x0 + 1), y ∈ [y0, y0 + 1)} .

The positively oriented fence Γ of E is the union of the oriented line segments (each

of which consists of two points)

Γ1 = {z0, z0+1}, Γ2 = {z0+1, z0+1+i}, Γ3 = {z0+1+i, z0+i}, Γ4 = {z0+i, z0}.

For any function f : Z+ iZ→ C we have (see Example 5.5 above)∫
Γ

f(z)d∗z =

∫
Γ1

f(z)∆z +

∫
Γ2

f(z)∆z +

∫
Γ3

f(z)∇z +

∫
Γ4

f(z)∇z

= f(z0) + if(z0 + 1)− f(z0 + i)− if(z0)

= i [f(z0 + 1)− f(z0)]− [f(z0 + i)− f(z0)] .

We see that the equality (6.2) is equivalent to (3.8), which in turn is equivalent to

the delta analyticity of f at z0. Since any bounded and connected set E in Z+ iZ is

a finite union of disjoint rectangles of the form (6.4), we get that if f is delta analytic

on E, then (6.2) holds, where Γ is the positively oriented fence of E. Thus we have

checked Theorem 6.4 in this particular case.
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