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In this paper, we discuss a certain nonautonomous Beverton–Holt equation of 
higher order. After a brief introduction to the classical Beverton–Holt equation and 
recent results, we solve the higher-order Beverton–Holt equation by rewriting the 
recurrence relation as a difference system of order one. In this process, we examine 
the existence and uniqueness of a periodic solution and its global attractivity. 
We continue our analysis by studying the corresponding second Cushing–Henson 
conjecture, i.e., by relating the average of the unique periodic solution to the average 
of the carrying capacity.

© 2017 Elsevier Inc. All rights reserved.

1. Autonomous Beverton–Holt model

The autonomous Beverton–Holt difference equation is given by [2]

zn+1 = μKzn
K + (μ− 1)zn

, n ∈ N0, (1)

where μ > 1 and K > 0 for all n ∈ N0. The constant K represents the carrying capacity, and μ > 1 is the 
inherent growth rate [7]. The equilibrium point is z = K, which is globally asymptotically stable. Beverton 
and Holt introduced their population model in the context of fisheries in 1957, and it still attracts interest 
in various fields such as biology, economy and social sciences, see [1,2,9,12].

In order to include seasonally changing environments, the periodically forced Beverton–Holt equation 
was introduced as

zn+1 = μKnzn
Kn + (μ− 1)zn

, n ∈ N0, (2)

where the positive carrying capacity K is now assumed to be ω-periodic for some ω ∈ N, i.e., Kn+ω = Kn

for all n ∈ N0.
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In 2002, Cushing and Henson [8] proposed the following two conjectures for (2).

Theorem 1. Equation (2) has a unique positive ω-periodic solution which is globally asymptotically stable 
on N0.

Theorem 2. The average of the unique ω-periodic solution z of (2) is strictly less than the average of the 
periodic carrying capacity, i.e.,

1
ω

ω−1∑
i=0

zi <
1
ω

ω−1∑
i=0

Ki. (3)

Biologically, Theorem 2 means that the introduction of a periodic environment is deleterious to the 
population.

In 2004, Kocić [10] proved the Cushing–Henson conjectures for a more general case of (2) with the 
assumption that K is bounded. In 2005, Kon [11] proved the second conjecture for

z(n + 1) = z(n)g
(

z(n)
K(n)

)
, n ∈ N0,

where z(0) = z0 and g : R+ → R
+ is continuous and satisfies the conditions

i) g(1) = 1,
ii) g(z) > 1 for all z ∈ (0, 1) and g(z) < 1 for all z ∈ (1, ∞),
iii) Kn+ω = Kn > 0 for some ω ∈ N and all n ∈ N0.

In [6], the authors proved the conjectures for a periodic time scales setting, and in [3], the quantum calculus 
case was presented. In [5], the authors considered the periodically forced Beverton–Holt equation with 
periodic growth rate. This describes a population with seasonal changing life cycles and reads as

zn+1 = μnKnzn
Kn + (μn − 1)zn

, n ∈ N0, (4)

where both the growth rate μ > 1 and the carrying capacity K > 0 are assumed to be ω-periodic. The 
authors provided a proof for the existence and uniqueness of an ω-periodic solution of (4) that is globally 
attractive. They also provided a counterexample for the classical second Cushing–Henson conjecture, which 
biologically means that a periodic environment can be beneficial for a population with seasonal life cycles.

2. A higher-order Beverton–Holt model

In this paper, we discuss the Beverton–Holt equation of order k ∈ N with periodic coefficients given by

zn+k = μnKnzn
Kn + (μn − 1)zn

, n ∈ N0, (5)

where μ > 1 and K > 0 are ω-periodic functions with ω > k, and the initial conditions are

z0 = (z0, z1, . . . , zk−1)T , zi ≥ 0.
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Remark 3. We notice that (5) is not equivalent to

zn = μnKnzn−k

Kn + (μn − 1)zn−k

unless ω = k.

Using the change of variable α = μ−1
μ and the substitution u = 1/z, we transform (5) into the linear 

recurrence relation

un+k = (1 − αn)un + αn

Kn
. (6)

Since μ > 1, we have α ∈ (0, 1). We now apply the identity

un+k =
k∑

j=0

(
k

j

)
Δjun

to see that (6) is the same as the linear difference equation

k∑
j=0

(
k

j

)
Δjun = (1 − αn)un + αn

Kn
, (7)

i.e.,

k∑
j=1

(
k

j

)
Δjun + αnun = αn

Kn
.

We introduce y = (y1, y2, . . . , yk)T , where

yi(n) = Δi−1un for all i ∈ {1, 2, . . . , k} and n ∈ N0.

The components of y satisfy the relation

Δyi(n) = yi+1(n) for i ∈ {1, 2, . . . , k − 1},

Δyk(n) = Δkun = −αny1 −
k−1∑
j=1

(
k

j

)
yj+1(n) + αn

Kn
.

In vector notation, we arrive at the system

Δy(n) = A(n)y(n) + g(n), y(0) = y0, (8)

where A(n) is the k × k matrix of the form

A(n) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 1

−α −
(
k
)

−
(
k
)

−
(
k
)

. . . −
(

k
)

⎞
⎟⎟⎟⎟⎟⎟⎠

(9)
n 1 2 3 k−1
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and

g(n) =

⎛
⎜⎜⎜⎜⎝

0
0
...
0
αn

Kn

⎞
⎟⎟⎟⎟⎠ with initial conditions y0 =

⎛
⎜⎜⎝

u0
Δu0

...
Δk−1u0

⎞
⎟⎟⎠ .

Before we give the solution of (9), let us first study the matrix A(n) in detail.

Lemma 4. For each n ∈ N0, the matrix A(n) is invertible, and

det(A(n)) = (−1)kαn.

Proof. To see the statement, recall α(n) ∈ (0, 1) for all n ∈ N0. By using a cofactor expansion across the 
first column, we obtain

detA(n) = (−1)k+1(−αn) det Ik−1 = (−1)kαn �= 0,

where I is the identity matrix with the indicated dimension. �
Lemma 5. A(n) has k distinct eigenvalues, the only real ones being

−1 + k
√

1 − αn if k is odd

and

−1 − k
√

1 − αn and − 1 + k
√

1 − αn if k is even.

Moreover,

det(λIk −A(n)) = (1 + λ)k + αn − 1. (10)

Proof. The matrix λIk −A is of the form
⎛
⎜⎜⎜⎜⎝

λ −1 0 0 . . . 0 0 0
0 λ −1 0 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . 0 λ −1
αn

(
k
1
) (

k
2
) (

k
3
)

. . .
(

k
k−3

) (
k

k−2
) (

k
k−1

)
+ λ

⎞
⎟⎟⎟⎟⎠ .

Using k − 1 row operations, we obtain the corresponding echelon form
⎛
⎜⎜⎜⎜⎝
λ −1 0 0 . . . 0 0 0
0 λ −1 0 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . 0 λ −1
0 0 0 0 . . . 0 0 p(n)

⎞
⎟⎟⎟⎟⎠ ,

where

p(n) =
(

k

k − 1

)
+ λ + αn

λk−1 +
k−2∑ (

k
i

)
λk−(i+1) .
i=1
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Hence

det(λIk −A(n)) = λk−1

(
λ + αn

λk−1 +
k−1∑
i=1

(
k
i

)
λk−(i+1)

)

= αn +
k∑

i=1

(
k

i

)
λi = αn − 1 +

k∑
i=0

(
k

i

)
λi

= αn − 1 + (1 + λ)k.

Thus, the eigenvalues of A(n) are the solutions of

(1 + λ)k = 1 − αn,

and recalling that αn ∈ (0, 1) yields the result. �
Corollary 6. The matrix Ik + A(n) is invertible for all n ∈ N0.

Proof. Since, by (10) with λ = −1,

det(−Ik −A(n)) = αn − 1 �= 0,

Ik + A(n) is invertible. �
Lemma 7. If we put e1 = (1, 0, . . . 0)T , ek(0, . . . 0, 1)T ∈ R

k, then

A−1(n)ek = − 1
αn

e1.

Proof. Note that A−1(n)ek is the kth column of A−1(n). By Cramer’s rule, we have

A−1(n)ek = 1
detA(n) (Ck1, Ck2, . . . , Ckk)T ,

where Cki = (−1)k+iAki(n) and Aki(n) is the determinant of A(n) when the kth row and the ith column are 
removed. By the construction of A, we see that Cki = 0 for i > 1 and Ck1 = (−1)k+1 det Ik−1 = (−1)k+1. 
By Lemma 4, detA(n) = (−1)kαn, and this yields the result. �
Definition 8. For any matrix sequence B such that I +B(n) is invertible for all n ∈ N0, we define the matrix 
exponential

eB(n,m) =
n−1∏
i=m

(I + B(i)) = (I + B(n− 1))(I + B(n− 2)) · · · (I + B(m))

if n > m, eB(n, n) = I, and eB(n, m) = e−1
B (m, n) if n < m.

The following result will be useful.

Lemma 9 (See [4, Theorem 5.23]). If B is a matrix sequence such that I +B(n) is invertible for all n ∈ N0
and if a, b, n ∈ N0 with a < b, then
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b−1∑
i=a

eB(n, i + 1)Bi = eB(n, a) − eB(n, b)

and

b−1∑
n=a

eB(n, i)Bn = eB(b, i) − eB(a, i).

We will also frequently use the following result.

Lemma 10. If B is a matrix sequence such that I+B(n) is invertible for all n ∈ N0 and such that B(n +ω) =
B(n) for some ω ∈ N, then

eB(n + ω,m + ω) = eB(n,m) for all m,n ∈ N0. (11)

Proof. If n > m, then

eB(n + ω,m + ω) =
n+ω−1∏
i=m+ω

(I + B(i)) =
n−1∏
i=m

(I + B(i + ω))

=
n−1∏
i=m

(I + B(i)) = eB(n,m).

Next, we have eB(n + ω, n + ω) = I = eB(n, n). If m > n, then

eB(n + ω,m + ω) = e−1
B (m + ω, n + ω) = e−1

B (m,n) = eB(n,m).

The proof is complete. �
The next result follows immediately from Definition 8.

Lemma 11. If B is a constant matrix such that I + B is invertible, then

eB(n + j, n) =
n+j−1∏
i=n

(I + B) = (I + B)j = eB(m + j,m) = eB(j, 0)

for all m, n, j ∈ N0.

We recall that A defined by (9) is such that Ik + A(n) is invertible for all n ∈ N0 (see Corollary 6), and 
therefore eA is well defined (see Definition 8). In the remainder of this section, we now study the function eA. 
Here and in the sequel, by convention, any “empty” sum is zero and any “empty” product is one, i.e.,

b∑
i=a

xi = 0 and
b∏

i=a

xi = 1 if a > b.

Lemma 12. For

m = sk + t with 0 ≤ t < k and s ∈ N0,

we have
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eT1 eA(n + m,n) = bT (n,m) for all n ∈ N0,

where e1 is as in Lemma 7 and b = (b1, b2, . . . , bk)T ∈ R
k with

bj(n,m) =
{(

t
j−1

)∏s−1
i=0 (1 − αik+n+t) if 1 ≤ j ≤ t + 1

0 if j > t + 1.

Proof. We prove the statement by induction on m. For m = 1, i.e., s = 0, t = 1, we have

eT1 eA(n + 1, n)

= (1, 0, 0, . . . , 0)

⎛
⎜⎜⎜⎝

1 1 0 . . . 0 0
0 1 1 0 . . . 0
...

...
...

...
...

...
−αn −

(
k
1
)

. . . 0 −
(

k
k−2

)
1 −

(
k

k−1
)

⎞
⎟⎟⎟⎠

= (1, 1, 0, . . . , 0, 0) = cT ,

where

cj =
{( 1

j−1
)

if 1 ≤ j ≤ 2
0 if j > 2.

Therefore c = b(n, 1), and the statement holds for m = 1. Assume the statement is true for m ∈ N. First 
note that

eT1 eA(n + m + 1, n) = eT1 eA(n + 1 + m,n + 1)eA(n + 1, n).

We consider two cases: m + 1 (mod k) �= 0 and m + 1 (mod k) = 0.
Case 1: Assume m + 1 (mod k) �= 0, i.e., t + 1 < k. We have

eT1 eA(n + m + 1, n) = bT (n + 1,m)eA(n + 1, n)

= (b1, . . . , bt+1 , 0 . . . , 0)

×

⎛
⎜⎜⎜⎝

1 1 0 . . . 0 0
0 1 1 0 . . . 0
...

...
...

...
...

...
−αn −

(
k
1
)

. . . −
(

k
k−3

)
−
(

k
k−2

)
1 −

(
k

k−1
)

⎞
⎟⎟⎟⎠

= (b1, b1 + b2, b2 + b3, . . . , bt + bt+1, bt+1, 0, . . . , 0,) = cT ,

where

cj =

⎧⎪⎪⎨
⎪⎪⎩
b1(n + 1,m) if j = 1
bj−1(n + 1,m) + bj(n + 1,m) if 2 ≤ j ≤ t + 2
0 if j > t + 2.

Note that
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bj−1(n + 1,m) + bj(n + 1,m)

=
(

t

j − 2

) s−1∏
i=0

(1 − αik+(n+1)+t) +
(

t

j − 1

) s−1∏
i=0

(1 − αik+(n+1)+t)

=
(
t + 1
j − 1

) s−1∏
i=0

(1 − αik+n+(t+1)).

Therefore, c = b(n, m + 1).
Case 2: Assume m + 1 (mod k) = 0, i.e., t + 1 = k. We have

eT1 eA(n + m + 1, n) = bT (n + 1,m)eA(n + 1, n)

= (b1, . . . , bk )

⎛
⎜⎜⎜⎝

1 1 0 . . . 0 0
0 1 1 0 . . . 0
...

...
...

...
...

...
−αn −

(
k
1
)

. . . 0 −
(

k
k−2

)
1 −

(
k

k−1
)

⎞
⎟⎟⎟⎠

=
(
b1 − αnbk, b1 + b2 −

(
k
1
)
bk, . . . , bk−1 + bk −

(
k

k−1
)
bk

)
= cT ,

where

c1 = b1 − αnbk

=
s−1∏
i=0

(1 − αik+(n+1)+t) − αn

(
k − 1
k − 1

) s−1∏
i=0

(1 − αik+(n+1)+t)

=
(

s−1∏
i=0

(1 − αik+n+k)
)

(1 − αn)

=
(

s∏
i=1

(1 − αik+n)
)

(1 − αn) =
s∏

i=0
(1 − αik+n)

and, for j > 1,

cj = bj−1 + bj −
(

k

j − 1

)
bk

=
(
k − 1
j − 2

) s−1∏
i=0

(1 − αik+(n+1)+t) +
(
k − 1
j − 1

) s−1∏
i=0

(1 − αik+(n+1)+t)

−
(

k

j − 1

)(
k − 1
k − 1

) s−1∏
i=0

(1 − αik+(n+1)+t)

=
(

k

j − 1

) s−1∏
i=0

(1 − αik+(n+1)+t) −
(

k

j − 1

) s−1∏
i=0

(1 − αik+(n+1)+t)

= 0.

This is equivalent to the entries in b. The proof is complete. �
The following corollary follows from the proof of Lemma 12.
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Corollary 13. We have eT1 eA(n + sk, n) =
∏s−1

i=0 (1 − αn+ik)eT1 .

3. Periodic solutions

Now we return to (8). Under our conditions, the solution of (8) is given in [4] by

y(n) = eA(n, 0)y0 +
n−1∑
i=0

eA(n, i + 1)g(i). (12)

Theorem 14 (Existence and Uniqueness). If α and K are ω-periodic and Ik − eA(n + ω, n) is invertible for 
all n ∈ N0, then (5) has a unique ω-periodic solution that is globally attracting all positive solutions.

Proof. Assume (5) has an ω-periodic solution z with z0 > 0. Then zn > 0 for all n ∈ N0 and u = 1/z
is a positive ω-periodic solution of (6). Then y = (u, Δu, Δ2u, . . . , Δk−1u) is an ω-periodic solution of (8). 
Hence, using (12), we obtain

y(n) = y(n + ω) = eA(n + ω, 0)y0 +
n+ω−1∑
i=0

eA(n + ω, i + 1)g(i)

= eA(n + ω, n)eA(n, 0)y0 +
n−1∑
i=0

eA(n + ω, n)eA(n, i + 1)g(i)

+
n+ω−1∑
i=n

eA(n + ω, n)eA(n, i + 1)g(i)

= eA(n + ω, n)y(n) + eA(n + ω, n)
n+ω−1∑
i=n

eA(n, i + 1)g(i).

Thus,

y(n) = [Ik − eA(n + ω, n)]−1
eA(n + ω, n)

n+ω−1∑
i=n

eA(n, i + 1)g(i).

Using the identity

(Ik −X)−1X = (X−1(Ik −X))−1 = (X−1 − Ik)−1,

where X is any invertible matrix, and putting

Λn = [eA(n, n + ω) − Ik]−1
,

we have

y(n) = Λn

n+ω−1∑
i=n

eA(n, i + 1)g(i). (13)

Thus, un = eT1 y(n) and zn = 1/un for all n ∈ N0.
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Conversely, define y by (13) and put un = eT1 y(n). Then

y(n + ω) = Λn+ω

n+2ω−1∑
i=n+ω

eA(n + ω, i + 1)g(i)

= Λn

n+ω−1∑
i=n

eA(n + ω, i + 1 + ω)g(i + ω)

= Λn

n+ω−1∑
i=n

eA(n, i + 1)g(i) = y(n)

and

y(n + k) = Λn+k

n+k+ω−1∑
i=n+k

eA(n + k, i + 1)g(i)

= Λn+k

n+ω−1∑
i=n

eA(n + k, i + 1)g(i) + Λn+k

n+k+ω−1∑
i=n+ω

eA(n + k, i + 1)g(i)

− Λn+k

n+k−1∑
i=n

eA(n + k, i + 1)g(i)

= Λn+keA(n + k, n)Λ−1
n y(n)

+ Λn+k

n+k−1∑
i=n

[eA(n + k, i + 1 + ω) − eA(n + k, i + 1)]g(i)

= Λn+k[eA(n + k, n + ω) − eA(n + k, n)]y(n)

+ Λn+k

n+k−1∑
i=n

[eA(n + k, i + 1 + ω) − eA(n + k, i + 1)]g(i)

= Λn+k[eA(n + k, n + k + ω)eA(n + k + ω, n + ω) − eA(n + k, n)]y(n)

+ Λn+k

n+k−1∑
i=n

[eA(n + k, n + k + ω)eA(n + k + ω, i + 1 + ω)

− eA(n + k, i + 1)] g(i)

= Λn+kΛ−1
n+keA(n + k, n)y(n) + Λn+k

n+k−1∑
i=n

Λ−1
n+keA(n + k, i + 1)g(i)

= eA(n + k, n)y(n) +
n+k−1∑
i=n

eA(n + k, i + 1)g(i).

Then, using Lemma 12, we have

un+k = eT1 y(n + k) = eT1 eA(n + k, n)y(n) + eT1

n+k−1∑
i=n

eA(n + k, i + 1)g(i)

= bT (n, k)y(n) +
n+k−1∑ αi

Ki
eT1 eA(n + k, i + 1)ek
i=n
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= (1 − αn)un +
k∑

i=1

αi+n−1

Ki+n−1
eT1 eA(n + k, i + n)ek

= (1 − αn)un +
k∑

i=1

αi+n−1

Ki+n−1
bT (n + i, k − i)ek

= (1 − αn)un + αn

Kn
.

Thus, u is an ω-periodic solution of (6), and so z = 1/u is an ω-periodic solution of (5).
It is left to show that the solution z is globally asymptotically stable. Let u = 1/z. Let z be any positive 

solution of (5) and put u = 1/z. We will show that it is enough to prove

un − un → 0 as n → ∞. (14)

Assume (14) holds. Note that

|un| ≥ min
0≤i≤ω−1

|ui| =: m > 0 for all n ∈ N0.

Let ε > 0. Because of (14), there exists N ∈ N such that

|un − un| < min
{
εm2

2 ,
m

2

}
for all n ≥ N.

Since

0 < m ≤ |un| ≤ |un − un| + |un| <
m

2 + |un|,

i.e.,

|un| >
m

2 for all n ≥ N,

we get

|zn − zn| =
∣∣∣∣ 1
un

− 1
un

∣∣∣∣ = |un − un|
|un||un|

≤ |un − un|
m
2 ·m < ε

for all n ≥ N , i.e., zn − zn → 0 as n → ∞. In summary, it is enough to prove (14). Let now n = sk + t for 
0 ≤ t < k. Then, using Lemma 12, we have

|un − un| = ‖eT1 y(n) − eT1 y(n)‖2 = ‖eT1 eA(n, 0)(y(0) − y(0))‖2

≤ ‖eT1 eA(n, 0)‖2‖y(0) − y(0)‖2

= ‖eT1 eA(n, t)eA(t, 0)‖2‖y(0) − y(0)‖2

≤ ‖eT1 eA(sk + t, t)‖2‖eA(t, 0)‖2‖y(0) − y(0)‖2

=

∥∥∥∥∥
(

s−1∏
i=0

(1 − αik+t)
)
e1

∥∥∥∥∥
2

‖eA(t, 0)‖2‖y(0) − y(0)‖2

=
s−1∏
i=0

(1 − αik+t)‖eA(t, 0)‖2‖y(0) − y(0)‖2 → 0
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as n → ∞, i.e., s → ∞, since ‖eA(t, 0)‖2 ≤ max0≤i≤ω−1 ‖eA(i, 0)‖2 and ‖y(0) − y(0)‖2 are bounded, and 
αi ∈ (0, 1) for all i ∈ N0 implies, together with the ω-periodicity of α, that

(ω−1)m∏
�=0

(1 − α�) =
(

ω−1∏
�=0

(1 − α�)
)m

→ 0 as m → ∞.

This completes the proof. �
Remark 15. The second-order Beverton–Holt equation, i.e., (5) with k = 2, is a discrete analogue of the 
second-order nonlinear differential equation

z′′z = 2z′(z′ − z) + α(t)z2
(

1 − z

K(t)

)
. (15)

Note that Theorem 14 provides a method to solve (15), since the transformation u = 1/z yields the 
second-order linear differential equation

u′′ + 2u′ + α(t)u = α(t)
K(t) ,

which can be solved using the matrix approach discussed in the proof of Theorem 14. The third-order 
Beverton–Holt equation, i.e., (5) with k = 3, is a discrete analogue of the third-order nonlinear differential 
equation

z′′′z2 = −3z2(z′′ + z′) + 6(z′)2(z − z′) + 6zz′z′′ + α(t)z3
(

1 − z

K(t)

)

and can be, by applying the transformation u = 1/z, transformed into the third-order linear differential 
equation

u′′′ + 3u′′ + 3u′ + α(t)u = α(t)
K(t) .

Remark 16. It is interesting is to note that the average of the periodic solution of the higher-order Beverton–
Holt model is not necessarily less than the average of the periodic solution of the classical Beverton–Holt 
model. To see this, take for example α = 0.5 constant, ω = 4, and

K0 = 20, K1 = 30, K2 = 40, K3 = 25.

Then the periodic solution in the classical case (k = 1) is

x0 = 27.95, x1 = 23.31, x2 = 26.69, x3 = 31.69,

which gives an average of 14
∑3

i=0 xi = 27.31, while the periodic solution for the second-order Beverton–Holt 
equation is

x
(2)
0 = 30.00, x

(2)
1 = 26.47, x

(2)
2 = 24.00, x

(2)
3 = 28.12,

with an average of 1
4
∑3

i=0 x
(2)
i = 27.1475. However, if we change the values slightly to

K0 = 20, K1 = 10, K2 = 30, K3 = 25,
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then we have

x0 = 21.32, x1 = 20.64, x2 = 13.47, x3 = 18.59,

x
(2)
0 = 25.71, x

(2)
1 = 16.67, x

(2)
2 = 22.50, x

(2)
3 = 12.50

with

1
4

3∑
i=0

xi = 18.50 < 19.34 = 1
4

3∑
i=0

x
(2)
i .

It thus depends on K whether or not a delay is beneficial for the population.

4. Constant growth rate

The classical second Cushing–Henson conjecture was formulated for the case k = 1 with constant growth 
and periodic carrying capacity. It says that the average of the periodic solution is less than the average of the 
carrying capacity, which biologically means that the introduction of a periodic environment is deleterious 
for the population. In this section, we will show that this is still true if we consider the higher-order 
Beverton–Holt equation discussed in this paper.

Theorem 17 (Second Cushing–Henson Conjecture). If the growth rate is constant and K is ω-periodic but 
not constant, then the unique ω-periodic solution z of (5) satisfies the second Cushing–Henson conjecture, 
i.e.,

1
ω

ω−1∑
i=0

zi <
1
ω

ω−1∑
i=0

Ki. (16)

Equality holds if and only if K is constant.

Proof. We recall that z = 1/u. We also recall that the ω-periodic solution y is given by

y(n) = Λn

n+ω−1∑
i=n

eA(n, i + 1)g(i),

with (see Lemma 11)

Λn = [eA(n, n + ω) − Ik]−1 = [eA(0, ω) − Ik]−1 =: Λ.

Note first (use Lemma 11, Lemma 4, Lemma 9, and Cramer’s rule)

eT1 Λ
n+ω−1∑
i=n

eA(n, i + 1)ek = eT1 Λ
(

n+ω−1∑
i=n

eA(n, i + 1)A
)
A−1ek

= eT1 Λ (eA(n, n) − eA(n, n + ω))A−1ek

= eT1 Λ (Ik − eA(0, ω))A−1ek

= −eT1 ΛΛ−1A−1ek

= −eT1 A
−1ek = − (−1)k+1

detA = 1
α
.
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Now we apply the Jensen inequality to arrive at

ω−1∑
n=0

zn =
ω−1∑
n=0

1
eT1 y(n)

=
ω−1∑
n=0

1
eT1 Λ

∑n+ω−1
i=n eA(n, i + 1)g(i)

= 1
α

ω−1∑
n=0

1∑n+ω−1
i=n

1
Ki

eT1 ΛeA(n, i + 1)ek

<
1
α

ω−1∑
n=0

∑n+ω−1
i=n eT1 ΛeA(n, i + 1)ekKi(

eT1 Λ
∑n+ω−1

i=n eA(n, i + 1)AA−1ek

)2

= α
ω−1∑
n=0

n+ω−1∑
i=n

eT1 ΛeA(n, i + 1)ekKi

= α

{
ω−1∑
i=0

Kie
T
1 Λ

i∑
n=0

eA(n, i + 1)ek +
2ω−2∑
i=ω

Kie
T
1 Λ

ω−1∑
n=i+1−ω

eA(n, i + 1)ek

}

= α

{
ω−1∑
i=0

Kie
T
1 Λ [Ik − eA(0, i + 1)]A−1ek

+
2ω−2∑
i=ω

Kie
T
1 Λ [eA(ω, i + 1) − eA(i + 1 − ω, i + 1)]A−1ek

}

= α

{
ω−1∑
i=0

Kie
T
1 Λ [Ik − eA(0, i + 1)]A−1ek

+
ω−1∑
i=0

Kie
T
1 Λ [eA(ω, i + 1 + ω) − eA(i + 1, i + 1 + ω)]A−1ek

}

= αeT1 Λ [Ik − eA(0, ω)]A−1ek

ω−1∑
i=0

Ki

= −αeT1 A
−1ek

ω−1∑
i=0

Ki =
ω−1∑
i=0

Ki.

Dividing this inequality by ω shows (16). �
Example 18. Let ω = 4, k = 2, and let the periodic carrying capacity be given by

K0 = 20, K1 = 40, K2 = 30, K3 = 25.

The average of the carrying capacity is then 28.7500. If we choose the growth rate α = 0.5, then we obtain 
the periodic solution z as

z0 = 25.7143, z1 = 28.5714, z2 = 22.5000, z3 = 33.3333,

which gives an average of 27.5298 < 28.7500, see Fig. 1. The dark dots represent the values for the periodic 
solution, the dark line the average of the periodic solution, and the light line the average of the carrying 
capacity.
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Fig. 1. The periodic solution in Example 18.

Example 19. If we change the growth rate to α = 0.2, then we obtain the periodic solution z as

z0 = 24.5455, z1 = 30.0000, z2 = 23.4783, z3 = 31.5789,

which gives an average of 27.4007 < 28.7500. Fig. 2 contains the values of this example.

Fig. 2. The periodic solution in Example 19.

Example 20. Fig. 3 contains the information for α = 0.7. The carrying capacity is as in Example 19. The 
values for the periodic solution z are

z0 = 26.8966, z1 = 27.3684, z2 = 21.6667, z3 = 35.1351,

which gives an average of 27.7667. This is again less than the average of the carrying capacity.

We conclude this section with the following equality.
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Fig. 3. The periodic solution in Example 20.

Theorem 21. If α is constant and K is ω-periodic, then the ω-periodic solution z of (5) satisfies

ω−1∑
i=0

1
zi

=
ω−1∑
i=0

1
Ki

.

Proof. We use Lemma 9, Lemma 11, and Lemma 7 to calculate

ω−1∑
i=0

1
zi

=
ω−1∑
i=0

eT1 y(i) =
ω−1∑
i=0

eT1 Λ
i+ω−1∑
j=i

eA(i, j + 1)g(j)

= α

ω−1∑
i=0

i+ω−1∑
j=i

1
Kj

eT1 ΛeA(i, j + 1)ek

= α
ω−1∑
j=0

1
Kj

eT1 Λ
j∑

i=0
eA(i, j + 1)AA−1ek

+α

2ω−2∑
j=ω

1
Kj

eT1 Λ
ω−1∑

i=j+1−ω

eA(i, j + 1)AA−1ek

=
ω−1∑
j=0

1
Kj

eT1 Λ
(
−

j∑
i=0

eA(i, j + 1)A
)
e1

+
2ω−2∑
j=ω

1
Kj

eT1 Λ

⎛
⎝−

ω−1∑
i=j+1−ω

eA(i, j + 1)A

⎞
⎠ e1

=
ω−1∑
j=0

1
Kj

eT1 Λ (eA(0, j + 1) − Ik) e1

+
2ω−2∑
j=ω

1
Kj

eT1 Λ (eA(j + 1 − ω, j + 1) − eA(ω, j + 1)) e1

=
ω−1∑ 1

Kj
eT1 Λ (eA(0, j + 1) − Ik) e1
j=0
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+
ω−1∑
j=0

1
Kj

eT1 Λ (eA(j + 1, j + 1 + ω) − eA(ω, j + 1 + ω))e1

=
ω−1∑
j=0

1
Kj

eT1 Λ (eA(0, ω) − Ik)e1 =
ω−1∑
j=0

1
Kj

,

which completes the proof. �
5. Periodic growth rate

Now we investigate (16) for the higher-order Beverton–Holt equation in the case when the growth rate 
is not constant. In this case, the classical conjecture is already not satisfied for k = 1, see [5, Example 3.1]. 
However, for k = 1, the following two modifications were presented in [5].

Theorem 22 (See [5, Conjecture 3.2]). The weighted average of the ω-periodic solution z of (4) is strictly 
less than the weighted average of the nonconstant ω-periodic carrying capacity K, i.e.,

1
a

ω−1∑
n=0

αnzn <
1
a

ω−1∑
n=0

αnKn, where a =
ω−1∑
n=0

αn. (17)

If the carrying capacity K is constant, then we have equality in (17).

Theorem 23 (See [5, Theorem 3.3]). The average of the ω-periodic solution z of (4) is strictly less than the 
average of the “surrounded” nonconstant ω-periodic carrying capacity K, i.e.,

1
ω

ω−1∑
n=0

zn <
1
ω

ω−1∑
n=0

Kn(1 + δn), (18)

where

δn = λ + 1
λ

ω−1∑
i=1

(αn − αn+i)
n+i−1∏
j=n+1

1
μj

, λ =
ω−1∏
j=0

μj − 1.

If the carrying capacity K is constant, then we have equality in (18).

If k ≥ 1 and the growth rate is periodic, then we can provide the following inequality, which yields a new 
relation even for the case of k = 1.

Theorem 24. The average of the ω-periodic solution z of (5) is less than the average of a function times the 
carrying capacity, namely

1
ω

ω−1∑
i=0

zi ≤
1
ω

ω−1∑
i=0

Qi

αi
Ki,

where

Qi =
ω−1∑
n=0

Sni(∑ω−1
Sni

)2
i=0
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with

Sni = eT1 Λn

[
Λ−1
n (1 − χi≥n) + Ik

]
eA(n, i + 1)ek

and

Λn = [eA(n, n + ω) − Ik]−1
, χi≥n =

{
1 if i ≥ n

0 else.

Equality holds if and only if there exists a constant C such that Cαi = Ki for all i ∈ N0.

Proof. We apply the Jensen inequality to obtain

ω−1∑
i=0

zi =
ω−1∑
i=0

1
eT1 y(i)

=
ω−1∑
i=0

1
eT1 Λi

∑i+ω−1
j=i eA(i, j + 1)g(j)

=
ω−1∑
i=0

1
eT1 Λi

{∑ω−1
j=i eA(i, j + 1)g(j) +

∑i−1
j=0 eA(i, j + 1 + ω)g(j + ω)

}

=
ω−1∑
i=0

1
eT1 Λi

∑ω−1
j=0 eA(i, j + 1)[Λ−1

j+1 + Ik − Λ−1
j+1χj≥i]g(j)

=
ω−1∑
i=0

1
eT1 Λi

∑ω−1
j=0 eA(i, j + 1)[Λ−1

j+1 (1 − χj≥i) + Ik]ek αj

Kj

≤
ω−1∑
i=0

∑ω−1
j=0 eT1 ΛieA(i, j + 1)[Λ−1

j+1 (1 − χj≥i) + Ik]ek Kj

αj(∑ω−1
j=0 eT1 ΛieA(i, j + 1)[Λ−1

j+1 (1 − χj≥i) + Ik]ek
)2

=
ω−1∑
j=0

Kj

αj
Qj ,

where

Qj =
ω−1∑
i=0

Sij(∑ω−1
j=0 Sij

)2

and

Sij = eT1 ΛieA(i, j + 1)[Λ−1
j+1 (1 − χj≥i) + Ik]ek

= eT1 Λi[Λ−1
i (1 − χj≥i) + Ik]eA(i, j + 1)ek.

To realize the last equality, note that

eA(i, j + 1)[Λ−1
j+1 (1 − χj≥i) + Ik]

= eA(i, j + 1)[(eA(j + 1, j + 1 + ω) − Ik) (1 − χj≥i) + Ik]

= [(eA(i, j + 1 + ω) − eA(i, j + 1)) (1 − χj≥i) + eA(i, j + 1)]

= [(eA(i, i + ω)eA(i + ω, j + 1 + ω) − eA(i, j + 1)) (1 − χj≥i) + eA(i, j + 1)]
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= [(eA(i, i + ω) − Ik) (1 − χj≥i) + Ik]eA(i, j + 1),

which completes the claim. Equality holds if and only if K/α is constant. �
From Theorem 24, we obtain immediately the following corollary.

Corollary 25. If Qi ≤ αi for all i = 0, 1, . . . , ω − 1, then

1
ω

ω−1∑
i=0

zi ≤
1
ω

ω−1∑
i=0

Ki.

Remark 26. If k = 1, then

Sij = e−α(i, j + 1)
(

e−α(0, ω)
e−α(0, ω) − 1 − χj≥i

)
.

Remark 27. If αi = α is constant, then Qi = α and the second Cushing–Henson conjecture is satisfied. We 
have

ω−1∑
j=0

Sij =
ω−1∑
j=0

eT1 Λ[Λ−1 (1 − χj≥i) + Ik]eA(i, j + 1)ek

= eT1 ΛeA(0, ω)
i−1∑
j=0

eA(i, j + 1)AA−1ek + eT1 Λ
ω−1∑
j=i

eA(i, j + 1)AA−1ek

= eT1 ΛeA(0, ω)[eA(i, 0) − Ik]A−1ek + eT1 Λ[Ik − eA(i, ω)]A−1ek

= eT1 Λ[eA(i, ω) − eA(0, ω) + Ik − eA(i, ω)]
(
− 1
α

)
e1

= eT1 Λ(−Λ−1)
(
− 1
α

)
e1 = 1

α

and the condition of Corollary 25 is satisfied.

We can also generalize the equality discussed in Theorem 21.

Theorem 28. If α and K are ω-periodic, then the unique ω-periodic solution z satisfies

ω−1∑
i=0

αi

zi
=

ω−1∑
i=0

αi

Ki
.

Proof. The periodic solution z of (5) satisfies the transformed equation (6), i.e.,

ui+k = (1 − αi)ui + αi

Ki
,

where u = 1/z. This can be rewritten as

k∑
j=1

(
k

j

)
Δjui + αiui = αi

Ki
.

Summing both sides of this equation yields
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ω−1∑
i=0

k∑
j=1

(
k

j

)
Δjui +

ω−1∑
i=0

αiui =
ω−1∑
i=0

αi

Ki
,

which gives the desired equality provided 
∑ω−1

i=0
∑k

j=1
(
k
j

)
Δjui = 0. Note that

ω−1∑
i=0

k∑
j=1

(
k

j

)
Δjui =

k∑
j=1

(
k

j

) ω−1∑
i=0

Δjui,

and 
∑ω−1

i=0 Δjui = 0 due to the periodicity of u. The proof is complete. �
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