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1. INTRODUCTION

The investigation of the nonnegativity of discrete quadratic functionals corre-

sponding to symplectic difference systems attracted attention in several recent papers

[8, 10, 13, 14]. In this paper we continue in this research and we present an alterna-

tive approach to necessary and sufficient conditions for the nonnegativity of discrete

quadratic functionals which were established in [8] by using the generalized Picone’s

identity and via constructing an example proving the necessity of the so-called “image

condition”. Here we use a different method introduced in [5] and further developed

and used in [11] and [10]. This approach is based on the diagonalization of a certain

“big” matrix which represents the quadratic functional under consideration. Also, the

construction of an example showing the necessity of the “image condition” presented

here is slightly different than the one given in [8].
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Our concern is the discrete quadratic functional

F(x, u) := xT0 Γ0x0 + xTN+1ΓxN+1

+
N∑
k=0

{xTk CTk Akxk + 2uTkBTk Ckxk + uTkBTkDkuk}

over the class of admissible sequences
(
x
u

)
, i.e., the sequences satisfying the equation

of motion xk+1 = Akxk + Bkuk, k = 0, . . . , N , and endpoints constraints

x0 ∈ Ker M0, xN+1 ∈ Ker M.

Sometimes we speak about an admissible sequence x = {xk}N+1
k=0 only. By this we

mean such an x for which there exist u0, . . . , uN such that
(
x
u

)
is admissible.

It is supposed that Ak,Bk, Ck,Dk are n×n matrices such that the 2n×2n matrix

Sk =

(
Ak Bk
Ck Dk

)
is symplectic for all k, i.e.,

(1) STk J Sk = J , where J =

(
0 I

−I 0

)
.

The matrices Γ0, Γ, M0, M of the endpoints cost and boundary conditions are

symmetric n×n matrices, and we assume without loss of generality thatM0,M are

projections and that Γ0 = (I −M0)Γ0(I −M0), Γ = (I −M)Γ(I −M). Note that

these identities together with the fact that M0, M are projections imply

M0Γ0 = 0 = Γ0M0 and MΓ = 0 = ΓM.

The quadratic functional F is closely related to the symplectic difference system

(2) zk+1 = Skzk with zk =

(
xk
uk

)
,

where Sk satisfies (1). This symplectic property of S translates in terms of its block

entries as

(3) ATC = CTA, BTD = DTB, ATD − CTB = I.

Since (1) is equivalent to SJ ST = J , identities (3) are equivalent to

ABT = BAT , CDT = DCT , ADT − BCT = I.

The fact that we consider the functional F over the class of sequences satisfying the

separated boundary condition at k = 0 and k = N + 1 actually means no loss of

generality. Indeed, if we consider a more general functional

F̃(z) :=

(
x0

xN+1

)
Γ̃

(
x0

xN+1

)
+

N∑
k=0

{xTk CTk Akxk + 2uTkBTk Ckxk + uTkBTkDkuk}

over the class of z =
(
x
u

)
satisfying the equation of motion and the joint boundary

condition
(

x0

xN+1

)
∈ Ker M̃, where M̃ is a 2n × 2n matrix, it is possible to use one
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of the procedures introduced in [6] and [14] to augment the problem into the “double

dimension”, but with separated boundary conditions at k = 0 and k = N + 1. Note

also that extending the matrices in the augmented functional over the discrete interval

[−1, N + 2] in a suitable way, the separated boundary conditions at k = 0 and

k = N + 1 can be reduced to the zero boundary conditions at k = −1 and k = N +2.

However, here we will not employ this transformation, since the reformulation of the

results to the extended functional brings no essential simplification of our problem.

The paper is organized as follows. In the remaining part of this section we briefly

recall the history of the investigation of the positivity/nonnegativity of discrete qua-

dratic functionals. We also compare this investigation with the same problem for

(continuous–time) quadratic functionals associated with linear Hamiltonian differen-

tial systems. Then, in Section 2, we state basic results concerning symplectic differ-

ence systems and their relationship to the quadratic functionals under consideration.

Section 3 is devoted to the introduction of the basic ideas of the diagonalization

method. The last section contains the main result of our paper – a “diagonalization

proof” of the necessary and sufficient condition for nonnegativity of the functional F .

Consider the linear Hamiltonian difference system

(4) ∆xk = Akxk+1 +Bkuk, ∆uk = Ckxk+1 − ATk uk,

where A,B,C are n × n matrices, B,C are symmetric and I − A is invertible. Ex-

panding the forward differences in this system, it is easy to see that (4) is a special

case of (2), see [4, p. 714]. The problem of the positivity of the quadratic functional

associated with (4)

FH(x, u) :=
N∑
k=0

{xTk+1Ckxk+1 + uTkBkuk}

over the class of sequences
(
x
u

)
satisfying ∆xk = Akxk+1 +Bkuk and x0 = 0 = xN+1 is

systematically studied in [1], where the so-called roundabout theorem is established.

This theorem presents several conditions which are equivalent to the positivity of

FH . The results of [1] were extended to “Hamiltonian” functionals FH with general

boundary conditions in subsequent papers [2, 3, 6, 12]. In particular, it is shown that

the general joint boundary conditions can be reduced to zero separated conditions

for a certain associated augmented functional. Concerning the roundabout theorem

for quadratic functionals F corresponding to symplectic difference systems (2), the

roundabout theorem (i.e., the characterization of the positivity of F) is presented in

[4]. The papers [7, 15] continue in this research and relate the oscillation properties of

(2) to the number of negative eigenvalues of a certain eigenvalue problem associated

with (2).
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The continuous counterparts of the functional F and of the system (2) are the

functional

FC(x, u) :=

∫ b

a

[uT (t)B(t)u(t) + xT (t)C(t)x(t)] dt

and the linear Hamiltonian differential system

(5) x′ = A(t)x+B(t)u, u′ = C(t)x− AT (t)u.

A comprehensive treatment of the relationship between oscillatory properties of (5)

and the positivity (nonnegativity) of the functional FC can be found in the books

[16, 17], see also the papers [9, 18, 19, 20, 21]. Note that the problem of the positivity

and the nonnegativity of FC is of the same difficulty in the continuous–time case, but

under a normality condition (or, equivalently, under a controllability condition), see

[16, 17].

In contrast to the continuous–time case, here we suppose no normality condition.

It turns out that the “gap” between the characterization of the positivity and the

nonnegativity of F is bigger than in the continuous case, in a certain sense, as pointed

out in Remark 2 of the last section.

2. AUXILIARY RESULTS

First let us recall the relationship between the symplectic system (2) and the

quadratic functional F . Functional F can be written in the form

F(z) = xT0 Γ0x0 + xTN+1ΓxN+1 + F0(z),

where

F0(z) =
N∑
k=0

zTk {STk KSk −K}zk, K =

(
0 0

I 0

)
, z =

(
x

u

)
and the equation of motion then reads as Kzk+1 = KSkzk.

Lemma 1. Let zk =
(
xk
uk

)
, z̃k =

(
x̃k
ũk

)
, k = 0, . . . , N , satisfy the equation of motion

and define the bilinear form associated with F0 by

F0(z, z̃) =
N∑
k=0

zk{STk KSk −K}z̃k.

Then

F0(z, z̃) =
N∑
k=0

{xTk+1(Ckx̃k +Dkũk − ũk+1) + ∆(xTk ũk)}.
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Proof. Using the equation of motion, we have

F0(z, z̃) =
N∑
k=0

{(Akxk + Bkuk)T (Ckx̃k +Dkũk)− xTk ũk}

=
N∑
k=0

{xTk+1(Ckx̃k +Dkũk − ũk+1) + xTk+1ũk+1 − xTk ũk}.

This shows the result.

The equivalent time-reversed system to (2) is the system zk = S−1
k zk+1, which can

also be studied as a discrete symplectic system [4]. In particular, this time-reversed

system has the form

(6) xk = DTk xk+1 − BTk uk+1, uk = −CTk xk+1 +ATk uk+1.

For any two (vector or matrix) solutions z, z̃ of (2) we have that zTk J z̃k is constant

for k = 0, . . . , N + 1. This is known as the Wronskian identity [4, Remark 1(ii)].

In particular, if we have ZTJZ = 0 for a 2n × n matrix solution Z =
(
X
U

)
of (2),

i.e., if XTU is symmetric, then we call Z a conjoined solution of (2). If, in addition,

rank Z = n, then Z is called a conjoined basis. Two conjoined bases Z =
(
X
U

)
and

Z̃ =
(
X̃
Ũ

)
are normalized if ZTJ Z̃ = I, i.e., if XT Ũ−UT X̃ = I. The natural conjoined

basis at k = 0 is the solution Z =
(
X
U

)
of (2) given by the initial conditions

X0 = I −M0, U0 = Γ0 +M0

and for this natural basis we have

(7) XT
0 Γ0X0 = XT

0 U0 = Γ0.

It plays the role of the principal solution of (2) at k = 0 used in [4] and reduces to

this principal solution, when the left endpoint of F is zero, i.e., when M0 = I. In

this special case one has X0 = 0 and U0 = I. A conjoined basis Z =
(
X
U

)
is said to

have no focal points in the interval (k, k + 1] if the “kernel condition”

(8) Ker Xk+1 ⊆ Ker Xk

and the “P-condition”

(9) Pk := XkX
†
k+1Bk ≥ 0

hold. Here Ker , † and ≥ stand for the kernel, the Moore–Penrose generalized inverse

and the nonnegative definiteness of the matrix indicated. Note also that if (8) holds,

then the matrix P is symmetric, see [4, p. 714 and Lemma 3]. Equivalently, Z has

a focal point in (k, k + 1] if either Ker Xk+1 6⊆ Ker Xk, or (8) holds but Pk 6≥ 0.

The nonnexistence of a focal point of the principal
(
X
U

)
at k = 0 in the discrete

interval (0, N +1] is a necessary and sufficient condition for positivity of (1) with zero

boundary conditions x0 = 0 = xN+1, see [1, 4].
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Next we define for k = 0, . . . , N + 1 the n× n matrix

(10) Qk := UkX
†
k + (UkX

†
kX̃k − Ũk)(I −X†kXk)U

T
k ,

where Z =
(
X
U

)
is the natural conjoined basis at k = 0 and Z̃ =

(
X̃
Ũ

)
is the conjoined

basis completing Z to a pair of normalized conjoined bases of (2). The existence of Z̃ is

proven e.g. in [10, Remark 3(ii)]. The matrix Q satisfies the identities QX = UX†X,

XTQX = UTX, and it solves the implicit Riccati equation R[Q]kXk = 0, where the

Riccati operator R[Q]k associated with (2) is defined by

R[Q]k := Qk+1(Ak + BkQk)− (Ck +DkQk).

We also introduce the (symmetric) matrix

P̃k = BTkDk − BTkQk+1Bk.

The matrices Q, P̃ appear in the proof of the main results of our paper in the last

section.

Finally, let us recall some results of the paper [15]. For a conjoined basis Z =
(
X
U

)
of (2) we define the n× n matrices

(11) Mk := (I −Xk+1X
†
k+1)Bk, Tk := I −M †

kMk, Pk := T Tk PkTk.

Note that Tk are symmetric and the properties of the Moore–Penrose inverse imply

(12) XT
k+1Mk = 0, MkTk = 0, BkTkXk+1X

†
k+1BkTk.

Let Z =
(
X
U

)
be any conjoined basis of (2). Then we have the following properties

of the matrices M,T, P, P̃ . By [15, Lemma 1(ii)], the kernel condition (8) holds iff

Mk = 0, i.e., iff Bk = Xk+1X
†
k+1Bk. Further, using (6)

XkX
†
k+1BkTk = (DTkXk+1 − BTk Uk+1)X†k+1BkTk

= DTkXk+1X
†
k+1BkTk − B

T
k Uk+1X

†
k+1Xk+1X

†
k+1BkTk

= DTk BkTk − BTkQk+1Xk+1X
†
k+1BkTk

= DTk BkTk − BTkQk+1BkTk = P̃kTk,

consequently, Pk = T Tk P̃kTk is always symmetric.

If z =
(
x
u

)
satisfies the equation of motion at k, i.e., xk+1 = Akxk + Bkuk, and if

xk ∈ Im Xk, then xk+1 can be (uniquely) written as a sum

(13) xk+1 = Xk+1αk+1 +Mkdk,

where, by (12), the vectors Xk+1αk+1 and Mkdk in the last sum are orthogonal. More

precisely, suppose that xk = Xkαk and set dk+1 := uk − Ukαk. Then

xk+1 = Akxk + Bkuk = AkXkαk + Bkuk = (Xk+1 − BkUk)αk + Bkuk

= Xk+1αk + Bkdk = Xk+1αk + (Mk +Xk+1X
†
k+1Bk)dk = Xk+1αk+1 +Mkdk,
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where we take αk+1 := αk + X†k+1Bkdk. The previous computation means that if

xk ∈ Im Xk (which holds e.g. if x0 ∈ Im X0 and if the kernel condition holds up

to k − 1), then the reachable set at k + 1 is an orthogonal sum Im Xk+1 ⊕ Im Mk.

Moreover, the vector xk+1 will stay in Im Xk+1 iff Mkdk = 0.

3. ADMISSIBILITY

In this section we recall some results from [10], where the space of admissible

x = {xk}N+1
k=0 is characterized without assuming the kernel condition.

Let us introduce (in accordance with [10], see also [5, 11]) the matrices Φk,j :=

Ak−1 · · · Aj for k > j, Φk,k := I, Pk,j := XkX
†
j+1Bj, j = 0, . . . , N , Pk,N+1 := Xk,

k = 0, . . . , N , PN+1,N+1 := XN+1. Further, for m = 0, . . . , N + 1, define

Nm :=



P0,0 P0,1 . . . P0,m−1 P0,m

−M0 P1,1 . . . P1,m−1 P1,m

−Φ2,1M0 −M1 . . . P2,m−1 P2,m

...
...

... . . .

−Φm−1,1M0 −Φm−1,2M1 . . . Pm−1,m−1 Pm−1,m

−Φm,1M0 −Φm,2M1 . . . −Mm−1 Pm,m


,

and set N := NN+1. Also, for m = 0, . . . , N + 1 we put

Km :=



T0 S0 0 . . . . . . 0

ST0 T1 S1
. . .

...

0 ST1 T2
. . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . Tm−1 Sm−1

0 . . . . . . 0 STm−1 Tm


,

where Tk := ATk EkAk − ATk Ck − Ek−1, Sk := CTk − ATEk, k = 0, . . . , N , and TN+1 :=

Γ + EN . The matrix Ek is any symmetric matrix satisfying BTk EkBk = DTk Bk (e.g.

Ek = BkB†kDkB
†
k), and E−1 := Γ0, see [10, 11]. Let

Ψ :=
(
−ΦN+1,1M0 −ΦN+1,2M1 . . . −ΦN+1,NMN−1 −MN XN+1

)
,

(i.e., Ψ is the last row in N ) and finally let

V :=




x0

...

xN+1

 , such that {xk}N+1
k=0 is admissible

 .

Now, by [10, Theorem 2], we have the following characterization of admissible vectors

xk, k = 0, . . . , N + 1.



8 M. BOHNER, O. DOŠLÝ, R. HILSCHER, AND W. KRATZ

Lemma 2. [10, Theorem 2] The vector

x =


x0

...

xN+1

 ∈ V ⇐⇒ x = Nd, d ∈ Ker MΨ.

4. DIAGONALIZATION AND NONNEGATIVITY

The following diagonalization result extends [11, Proposition 1] to the case when

the kernel condition (8) is replaced by a weaker image condition

(14) xk ∈ Im Xk, k = 0, . . . , N + 1,

as we will see later.

Theorem 1. Let m ∈ {0, . . . , N} and Um = diag {T0, . . . , Tm} with Tk given by (11).

Then

UTm+1N T
m+1Km+1Nm+1Um+1 =

(
UTmN T

mKmNmUm 0

0 Pm+1

)
.

Proof. Using sightly modified computations from [5] and [11], we have

N T
m+1Km+1Nm+1 =

(
N T
mKmNm ΩmX

†
m+2Bm+1

BTm+1(X†m+2)TΩT
m (X†m+2Bm+1)TΛm(X†m+2Bm+1)

)
,

where

Ωm := N T
mKmQm +N T

mRmXm+1,

Λm := QTm+1Km+1Qm+1

= QTmKmQm +QTmRmXm+1 +XT
m+1RT

mQm +XT
m+1Tm+1Xm+1,

with n(m+ 1)× n matrices

Qm =


X0

...

Xm

 , Rm =


0
...

0

Sm

 .

Concerning the matrices Ω and Λ, again using computations from [5, 11]

Ωm+1 =

(
Ωm

BTm+1(X†m+2)T{Λm +XT
m+1Sm+1Xm+2}

)
,

Λm = XT
m+1[Um+1 + (ATm+1Em+1Am+1 − CTm+1Am+1)Xm+1].

Hence, (we skip the index m+ 1 in the next computations), by using the identity

PT = XX†m+2BT = BT (D −Qm+2B)T = P̃T
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derived in Section 2, where Q is given by (10), we have

T TBT (X†m+2)T{Λm +XTSXm+2}

= T TBT (X†m+2)T{XTU +XT (ATEA − CTA)X +XTSXm+2}

= (XX†m+2BT )T{U + (ATEA − CTA)X + (CT −ATE)(AX + BU)}

= T T (DT − BQm+2){BU + B(ATEA − CTA)X + B(CT −ATE)(AX + BU)}

= T T (DT − BQm+2){BU + (BCT − BATE)BU}

= T T (DT − BQm+2){BU + (BCT −ADT )BU}

= 0.

Consequently, since Ω0 = 0, by a similar computation as in [11, Lemma 5], we have

Ωm = 0, m = 1, . . . , N , by the induction principle. Finally (again, no index means

index m+ 1),

(X†m+2BT )TΛm(X†m+2BT )

= T T (X†m+2B)T{XTU −XT (ATEA − CTA)X}X†m+2BT

= (XX†m+2BT )T{U + (ATEA − CTA)X}X†m+2BT

= T T (D −Qm+2B)T{BU + BATEA − BCTA)X}X†m+2BT

= T T (D −Qm+2B)T{BUX†m+2B + (ABTEA − BCTA)BT (D −Qm+2B)}T

= T T (D −Qm+2B)T{BUX†m+2B + (ADTBAT − BCTABT )(D −Qm+2B)}T

= T T (D −Qm+2B)T{BUX†m+2B +ABT (D −Qm+2B)}T

= T T (D −Qm+2B)T{BUXm+2B +AXX†m+2B}T

= T T (D −Qm+2B)TXm+2X
†
m+2BT

= T T (D −Qm+2B)T (B −M)T

= T T (BTD − BTQm+2B)TT = P.

The proof is complete.

The previous statement shows what role is played by the matrices Pk in the

investigation of the nonnegativity of the functional F . They are the block diagonal

entries of the “big” matrix which represents the quadratic functional F . Another

view on these matrices is presented at the end of this section.

By using the statement of Theorem 1 we can prove the following necessary and

sufficient condition for the nonnegativity of F .

Theorem 2. Let Z =
(
X
U

)
be the natural conjoined basis at k = 0. Then the functional

F is nonnegative definite iff the following three statements hold true:

(i) The “image condition” (14) holds for every admissible
(
x
u

)
.
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(ii) The “P condition” holds:

(15) Pk = T Tk XkX
†
k+1BkTk ≥ 0, k = 1, . . . , N.

(iii) The “endpoint condition” holds:

(16) QN+1 + Γ ≥ 0 on Ker M∩ Im XN+1.

Proof. First we prove the sufficiency of conditions (i), (ii) and (iii) for the nonneg-

ativity of F . Let
(
x
u

)
be any admissible pair, i.e., it satisfies the equation of mo-

tion and the boundary condition M0x0 = 0 = MxN+1. By Lemma 2, there exists

d = (dT0 , . . . , d
T
N+1)T ∈ Rn(N+2), d ∈ Ker MΨ, such that

x =


x0

...

xN+1

 = Nd = N


d0

...

dN+1

 ,

i.e.,

xk = −
k−1∑
j=0

Φk,j+1Mj +Xk

(
N∑
j=k

X†j+1Bj + dN+1

)
.

For k = 1 (we always have x0 ∈ Im X0 even without image condition (14)),

x1 = −M0d0 +X1α1, α1 :=
N∑
j=1

X†j+1Bjdj + dN+1

and the condition x1 ∈ Im X1 implies d0 ∈ Ker M0 = Im T0, hence d0 = T0γ0 for

some γ0 ∈ Rn. By using the same argument, dk = Tkγk, k = 2, . . . , N . The condition

MΨd = 0 then reads asMXN+1dN+1 = 0 and it is satisfied for dN+1 ∈ Ker MXN+1.

Consequently, if the image condition (14) holds, then

F(x, u) =


γ0

...

γN

dN+1


T

UTN+1N T
N+1KN+1NN+1UN+1


γ0

...

γN

dN+1

 .

By a similar computation as in the proof of Theorem 1,

UTN+1N T
N+1KN+1NN+1UN+1 =

(
UTNN T

NKNNNUN ΩN

ΩT
N L

)

=

(
diag {P0, . . . , PN} 0

0 L

)
,

where

L := ΛN−1 +XT
N+1STNXN + (XT

NSN +XT
N+1TN+1)XN+1.
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Now, substituting for ΛN−1, we have (we skip the index N in the next computation)

L = ΛN−1 +XTSXN+1 +XT
N+1STX +XT

N+1TN+1XN+1

= XTU +XTATEAX −XTCTAX +XT (C − ATE)XN+1

+XT
N+1(CT − EA)X +XT

N+1(Γ + E)XN+1

= XTU + (−XT
N+1 + UTBT )E(−XN+1 + BU)−XTAT (CX + EXN+1)

+XTCTXN+1 +XT
N+1CX −XT

N+1EAX +XT
N+1ΓXN+1 +XT

N+1EXN+1

= XTU + UTBTDU − UT (I −DTA)X +XTCTXN+1 +XT
N+1ΓXN+1

= UTDT (BU +AX) +XTCTXN+1 +XT
N+1ΓXN+1

= UT
N+1XN+1 +XT

N+1ΓXN+1

= XT
N+1(QN+1 + Γ)XN+1.

Consequently,

UTN+1N T
N+1KN+1NN+1UN+1 = diag {P0, . . . , PN , X

T
N+1(QN+1 + Γ)XN+1}.

This proves the sufficiency part of this theorem, since XT
N+1(QN+1 + Γ)XN+1 ≥ 0 on

Ker MXN+1 iff QN+1 + Γ ≥ 0 on Ker M∩ Im XN+1.

Concerning the necessity part, suppose first that (i) is violated, i.e., there exists

m ∈ {0, . . . , N} and an admissible z =
(
x
u

)
such that xk ∈ Im Xk for k = 0, . . . ,m,

and xm+1 6∈ Im Xm+1. Then, by (13),

xm+1 = Xm+1αm+1 +Mmdm

for some αm+1, dm ∈ Rn with Mmdm 6= 0. Let S ′ be the n × n matrix satisfying

Xm+1S
′ = 0, Um+1S

′ = Mm, the existence of such a matrix is proven in [8]. Put

α̃ = tS ′dm, define

z̃ =

(
x̃

ũ

)
:=


(
Xkα̃
Ukα̃

)
, k = 0, . . . ,m,(

0
0

)
, k = m+ 1, . . . , N + 1,

and let z∗ = z + z̃. Then this z∗ is admissible (since it is the sum of admissible

sequences) and by a direct computation we have F(z̃) = 0. Hence

F(z∗) = F(z) + 2F(z̃, z),

where

F(z̃, z) = x̃T0 Γ0x0 + x̃TN+1ΓxN+1 +
N∑
k=0

z̃Tk {STk KSk −K}zk

= xT0 Γ0x̃0 + xTN+1Γx̃N+1 +
N∑
k=0

zTk {STk KSk −K}z̃k.
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By using Lemma 1 and (7), together with x0 = X0α0 for some α0 ∈ Rn, we have

F(z̃, z) = xT0 Γ0x̃0 + xTN+1Γx̃N+1 +
N∑
k=0

{xTk+1(Ckx̃k +Dkũk − ũk+1) + ∆(xTk ũk)}

= xTm+1(CmXm + CmUm)α̃ + αT0 (XT
0 Γ0X0 −XT

0 U0)α̃

= (Xm+1αm+1 +Mmdm)TUm+1α̃

= t · dTmMT
mUm+1S

′dm

= t · dTmMT
mMmdm

= t ||Mmdm||2 → −∞ as t→ −∞.

Consequently, F(z + z̃) = F(z) + 2t(dTMTMd)m < 0 for t sufficiently negative.

Now let us suppose that (ii) does not hold, i.e., the matrix Pm fails to be non-

negative definite for some m ∈ {0, . . . , N}, then F 6≥ 0 by [10, Theorem 1]. Recall

that the admissible pair z =
(
x
u

)
for which F(z) < 0 is in this case e.g.

xk :=

Xkd for k=0, . . . ,m

0 for k=m+ 1, . . . , N + 1,
uk :=


Ukd for k=0, . . . ,m− 1

Ukd−Tkc for k=m

0 for k=m+ 1, . . . , N + 1,

where cTPmc < 0, d := X†m+1BmTmc and, where
(
X
U

)
is the natural conjoined basis at

k = 0. It is shown in the proof of [10, Theorem 1] that F(z) = cTPmc < 0.

Finally, suppose that (iii) does not hold, i.e. the endpoint condition (16) is not

satisfied, i.e. d̃T (QN+1 + Γ)d̃ < 0 for some d̃ ∈ Ker M∩ Im XN+1, i.e., d̃ = XN+1c̃

and Md̃ = 0. Then d = (0, . . . , 0, c̃T )T ∈ Rn(N+2) satisfies d ∈ Ker MΨ. Hence,

x = (xT0 , . . . , x
T
N+1)T := NN+1d is admissible and (with associated u) we have F(z) =

d̃T (QN+1 + Γ)d̃ < 0.

Remark 1. Observe that Theorems 1 and 2 are closely related, in a certain sense,

to the generalized Picone identity [8, Proposition 2.1]. Indeed, this identity states

that if Z =
(
X
U

)
and Z̃ =

(
X̃
Ũ

)
are normalized conjoined bases of (2), Q is given by

(10), z =
(
x
u

)
satisfies the equation of motion at k, i.e., xk+1 = Akxk + Bkuk, and

xk ∈ Im Xk, xk+1 ∈ Im Xk+1, then

xTk CTk Akxk + 2uTkBTk Ckxk + uTkBTkDkuk = sTkPksk + ∆(xTkQkxk),
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where sk = uk − Qkxk. Hence, if Z =
(
X
U

)
is the natural conjoined basis at k = 0,

i.e., XT
0 Γ0X0 = XT

0 Q0X0, then

F(z) = xTN+1(Γ +QN+1)xN+1 +
N∑
k=0

sTkPksk

= xTN+1(Γ +QN+1)xN+1 +


s0

...

sN


T

diag {P0, . . . , PN}


s0

...

sN



=


s0

...

sN

xN+1


T

diag {P0, . . . , PN ,Γ +QN+1}


s0

...

sN

xN+1

 .

Remark 2. Let us compare the necessary and sufficient condition for the positivity

and the nonnegativity of F in case of zero boundary conditions x0 = 0 = xN+1.

The positivity of F is equivalently characterized by conditions (8), (9), while the

nonnegativity of F is characterized by (14) and (15). Thus, the gap between the

positivity and the nonnegativity of F is as big as the gap between the image condition

(14) and the kernel condition (8). But since F ≥ 0 implies the image condition,

the gap between F ≥ 0 and F > 0 is in fact the kernel condition itself, see [10,

Corollary 3] with M = I. In the continuous–time case, and under the normality

condition (i.e., the trivial solution
(
x
u

)
≡
(

0
0

)
is the only solution of (5) for which

x(t) ≡ 0 on an interval of positive length), and B(t) ≥ 0, we have FC(x, u) > 0 iff

the principal solution at t = 0 (i.e., the conjoined basis given by the initial condition

X(a) = 0, U(a) = I) satisfies detX(t) 6= 0 for t ∈ (a, b]. Moreover, under the same

assumptions, FC(x, u) ≥ 0 iff detX(t) 6= 0 for t ∈ (a, b). The last two conditions on

detX(t) are much closer, in a certain sense, than conditions (8), (9) and (14), (15)

in the discrete case.
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[4] M. Bohner, O. Došlý, Disconjugacy and transformations for symplectic systems, Rocky

Mountain J. Math. 27 (1997), no. 3, 707–743.
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[6] M. Bohner, O. Došlý, W. Kratz, Discrete Reid roundabout theorems. Dynam. Systems

Appl., 8 (1999), 345–352.
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[9] Z. Došlá, O. Došlý, Quadratic functionals with general boundary conditions, Appl. Math.
Optim. 36 (1997), 243–262.
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