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a b s t r a c t

This paper deals with the periodic solutions problem for impulsive differential equations. By using Lya-
punov’s second method and the contraction mapping principle, some conditions ensuring the existence
and global attractiveness of unique periodic solutions are derived, which are given from impulsive control
and impulsive perturbation points of view. As an application, the existence and global attractiveness of
unique periodic solutions for Hopfield neural networks are discussed. Finally, two numerical examples
are provided to demonstrate the effectiveness of the proposed results.
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1. Introduction

As iswell known, impulsive differential equations serve as basic
models to study the dynamics of processes that are subject to sud-
den changes in their states. They have been extensively studied in
the past several years, see Baı̆nov and Simeonov (1993), Haddad,
Chellaboina, and Nersesov (2006), Ignatyev (2008), Lakshmikan-
tham, Baı̆nov, and Simeonov (1989), Li (2012), Nieto and O’Regan
(2009), Samoı̆lenko and Perestyuk (1995), Stamova and Stamov
(2001) and the references cited therein. A very basic and important
qualitative problem in the study of impulsive differential equa-
tions concerns the existence and attractiveness of periodic solu-
tions. Many important and interesting results on this topic have
been reported, see Cooke and Kroll (2002), Huseynov (2010), Nieto
(2002), Shen, Li, and Wang (2006), Stamov (2009) and Wang, Yu,
and Niu (2012) for recent works.

On the other hand, impulsive control theory has become a
very important direction in the theory of impulsive differential
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equations, stimulated by their numerous applications to prob-
lems arising in orbital transfer of satellite (Prussing, Wellnitz, &
Heckathorn, 1989), ecosystems management (Liu & Rohlf, 1998),
electrical engineering (Yang & Chua, 1997), and so on.More related
to thismatter, wemention (Li, 2010; Li & Rakkiyappan, 2013; Yang,
1999) and the references in these works.

In this paper, we shall investigate the periodic solutions prob-
lem for impulsive differential equations via Lyapunov’s second
method and contractionmapping principle. Some sufficient condi-
tions ensuring the existence and global attractiveness of periodic
solutions are derived from impulsive control and impulsive per-
turbation points of view, respectively. Especially, our results show
that impulsive control may contribute to the existence and attrac-
tiveness of periodic solutions. In addition, we develop our theo-
retical results to study the existence and attractiveness of periodic
solutions for Hopfield neural networks. The rest of this paper is or-
ganized as follows. In Section 2, we introduce some notations and
definitions. In Section 3, we present the main results on periodic
solutions problem of the addressed equations. In Section 4, two
numerical examples and their computer simulations are given in
order to show the effectiveness of our methods. Finally, we shall
make some concluding remarks in Section 5.

2. Preliminaries

Notation 2.1. Let R, R+, and N denote the set of the real numbers,
the set of the positive numbers, and the set of the positive integers,
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respectively. Moreover, Rn and Rn×m denote the n-dimensional
and n × m-dimensional real spaces, respectively, equipped with
the Euclidean norm ∥ · ∥, and [·] denotes the integer function. For
any interval J ⊆ R and any set S ⊆ Rk, 1 ≤ k ≤ n, we put
C(J, S) = {φ : J → S is continuous }, PC(J, S) = {ϕ : J → S
is continuous everywhere except at a finite number of points t ,
at which ϕ(t+), ϕ(t−) exist and ϕ(t+) = ϕ(t)}, and K = {a ∈

C(R+, R+) : a(0) = 0 and a(s) > 0 for s > 0 and a is strictly
increasing in s}.

Consider the impulsive problemx′(t) = f (t, x(t)), t ∈ [tk−1, tk),
1x|t=tk = x(tk) − x(t−k ) = Ik(tk, x(t−k )), k ∈ N,
x(t0) = x0,

(2.1)

where x0 ∈ Rn, x′ denotes the right-hand derivative of x, the
impulse times {tk}k∈N satisfy 0 ≤ t0 < t1 < · · · < tk < · · · and
limk→∞ tk = ∞, f ∈ C([tk−1, tk) × Rn, Rn), and Ik ∈ C([t0, ∞) ×

Rn, Rn).

Definition 2.2. The function V : [t0, ∞)×Rn
×Rn

→ R+ belongs
to the class ϑ0 provided

(i) V is continuous on each of the sets [tk−1, tk)× Rn
× Rn and all

limits

lim
(t,x,y)→(t−k ,x̂,ŷ)

V (t, x, y) = V (t−k , x̂, ŷ) exist;

(ii) V (t, x, y) is locally Lipschitz in x and y, i.e., for given (t, x, y),
there exists a neighborhood U = U(t, x, y) and constants
L1 = L1(t, x, y), L2 = L2(t, x, y) such that

|V (τ , u, v) − V (τ , ũ, ṽ)| ≤ L1∥u − ũ∥ + L2∥v − ṽ∥

for (τ , u, v), (τ , ũ, ṽ) ∈ U;

(iii) V (t, x, y) ≡ 0 for any t ≥ t0 as x = y ∈ Rn.

Definition 2.3. Let V ∈ ϑ0. For any (t, x, y) ∈ [tk−1, tk)× Rn
× Rn,

the upper right-handDini derivative of V along the solution of (2.1)
is defined by

D+V (t, x, y) = lim sup
δ→0+

1
δ

{V (t + δ, x + δf (t, x), y + δf (t, y))

− V (t, x, y)} .

Definition 2.4. A map x : R+ → Rn is said to be an ω-periodic
solution of (2.1) provided

(i) x satisfies (2.1) and is a piecewise continuous map with first-
class discontinuity points;

(ii) x satisfies x(t + ω) = x(t) for t ≠ tk and x(tk + ω+) = x(t+k )
for k ∈ N.

Definition 2.5. Let x∗
= x∗(t, t0, x∗

0) be an ω-periodic solution
of (2.1) with initial value (t0, x∗

0). Then x∗ is said to be globally
attractive if for any solution x = x(·, t0, x0) of (2.1) through
(t0, x0), |x − x∗

| → 0 as t → ∞.

3. Main results

Theorem 3.1. Assume there exist w1, w2 ∈ K, λ ∈ PC(R+, R), V ∈

ϑ0, ω > 0, q ∈ N, {ηk}k∈N ⊂ R+ with

(i) w1(∥x − y∥) ≤ V (t, x, y) ≤ w2(∥x − y∥) for (t, x, y) ∈

[t0, ∞) × Rn
× Rn;

(ii) D+V (t, x, y) ≤ λ(t)V (t, x, y) for (t, x, y) ∈ [tk−1, tk) × Rn
×

Rn;
(iii) V (tk, x + Ik(tk, x), y + Ik(tk, y)) ≤ ηkV (t−k , x, y) for k ∈ N;
(iv) f (t + ω, ·) = f (t, ·), Ik(t + ω, ·) = Ik(t, ·), Ik+q(t, ·) =

Ik(t, ·), tk+q = tk + ω, k ∈ N

and 
t0<tk≤t

ηk


exp

 t

t0
λ(s)ds


→ 0 as t → ∞. (3.1)

Then (2.1) has a unique ω-periodic solution which is globally attrac-
tive.

Proof. Let x = x(·, t0, x0) and y = y(·, t0, y0) be the solutions of
(2.1) through (t0, x0) and (t0, y0), respectively, where x0 ≠ y0. Set
V (t) = V (t, x(t), y(t)). It follows from (ii) and (iii) (see Samoı̆lenko
& Perestyuk, 1995 for detailed information) that

V (t) ≤ V (t0)


m

k=1

ηk


exp

 t

t0
λ(s)ds


for t ∈ [tm, tm+1) and m ∈ N,

i.e.,

V (t) ≤ V (t0)

 
t0<tk≤t

ηk


exp

 t

t0
λ(s)ds


for t > t0.

By (i), we get

∥x(t) − y(t)∥ ≤ w−1
1


w2(∥x0 − y0∥)

 
t0<tk≤t

ηk



× exp
 t

t0
λ(s)ds


for t > t0,

which, together with (3.1), yields that there exists T ≥ t0 such that

∥x(t) − y(t)∥ ≤
1
2
∥x0 − y0∥ for t > T . (3.2)

Consider a simple operator from Rn to Rn defined by

F : u0 → u(t0 + ω, t0, u0),

where u(·, t0, u0) is a solution of (2.1) through (t0, u0). It then can
be deduced that

F ku0 = u(t0 + kω, t0, u0), k ∈ N. (3.3)

Choosing k = [T + 1]/ω + 1 and considering (3.2) and (3.3), we
have

∥F kx0 − F ky0∥ = ∥x(t0 + kω, t0, x0) − y(t0 + kω, t0, y0)∥

≤
1
2
∥x0 − y0∥.

Hence, F is a contraction mapping in the Banach space Rn. Using
Banach’s fixed point theorem, there exists a unique u∗

∈ Rn such
that F u∗

= u∗, which implies that there exists a unique u∗
∈ Rn

such that x(t0 +ω, t0, u∗) = u∗, where x = x(·, t0, u∗) is a solution
of (2.1) through (t0, u∗). Define an ω-periodic extension of x by

x̂(t) =


x(t) if t ∈ [t0, t0 + ω),
x(t − nω) if t ∈ [t0 + nω, t0 + (n + 1)ω), n ∈ N.

It is clear that x̂ is ω-periodic. Moreover, for any t ∈ [t0 + nω, t0 +

(n + 1)ω), when t ≠ tk, k ∈ N, we have

x̂′(t) = x′(t − nω)

= f (t − nω, x(t − nω)) = f (t, x(t − nω)) = f (t, x̂(t)),
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and when t = tk, k ∈ N, we have

x̂(tk) = x(tk − nω) = x(tk−nq)

= x(t−k−nq) + Ik−nq(tk−nq, x(t−k−nq))

= x((tk − nω)−) + Ik(tk − nω, x(tk − nω)−)

= x̂(t−k ) + Ik(tk, x̂(t−k )).

Thus x̂ is an ω-periodic solution of (2.1) through (t0, u∗). By the
existence–uniqueness of solutions of (2.1), x̂ = x = x(·, t0, u∗).
Hence, we have proven that (2.1) has an ω-periodic solution.
Furthermore, we claim that theω-periodic solution x = x(·, t0, u∗)
is globally attractive. In fact, for any another solution y =

y(·, t0, y0) of (2.1), by the above discussion, we find

∥x(t) − y(t)∥ ≤ w−1
1


w2(∥u∗

− y0∥)

 
t0<tk≤t

ηk



× exp
 t

t0
λ(s)ds


→ 0 as t → ∞.

Thus the proof is complete. �

Remark 3.2. In Chellaboina, Bhat, and Haddad (2003), an invari-
ance principle was presented for dynamical systems possessing
left-continuous flows, especially for impulsive systems. Some in-
variant set stability theorems for nonlinear impulsive dynamical
systems were derived, which can be used to investigate stability
of limit cycles and periodic orbits, especially for state-dependent
impulsive systems. However, due to the assumptions that

V (s(t, x0)) ≤ V (s(τ , x0)), τ ≤ t or V (x + fd(x)) − V (x) ≤ 0,

the results on dynamics are only valid for the impulsive pertur-
bation point of view. In Liang, Liu, and Xiao (2011), the existence
of periodic solution for impulsive delay differential equations was
studied via some inequality techniques. One of the necessary but
undesirable bases is that the solutions of the system are ultimately
bounded. In Zhang, Yan, and Zhao (2008), some results for exis-
tence of positive periodic solutions of impulsive differential equa-
tions with or without delays were studied via some fixed point
theorems. But all those results (Liang et al., 2011; Zhang et al.,
2008) are not suitable for the attractiveness of the periodic so-
lution. In this paper, Theorem 3.1 provides some Lyapunov con-
ditions for the existence and global attractiveness of the unique
ω-periodic solution of (2.1). In particular, when λ ∈ PC(R+, R+),
Theorem3.1 is given from the impulsive control point of view. That
is, (2.1) may originally have no ω-periodic solution or the period-
icity may be unknown, but it admits a unique ω-periodic solution
which is globally attractive under proper impulsive control. When
λ ∈ PC(R+, R−), it is given from the impulsive perturbation point
of view. That is, if the corresponding continuous system of (2.1)
(i.e., without impulsive effects) originally admits a periodic solu-
tion which is globally attractive, then (2.1) can keep the existence
and global attractiveness of the ω-periodic solution under certain
impulsive perturbations, i.e., robustness. Therefore, the develop-
ment results in this paper make up for some deficiencies of the
existing results (Chellaboina et al., 2003; Liang et al., 2011; Zhang
et al., 2008).

Remark 3.3. If λ(t) in (3.1) satisfies some special conditions, then
one may find that it is possible that the impulsive constants ηk
in Theorem 3.1 are large enough. That is, Theorem 3.1 is valid
for impulsive differential equations with large impulse effects. In
particular, if λ(t) ≡ λ ∈ R, then we can state the following
corollaries of Theorem 3.1.
Corollary 3.4. Assume (i)–(iv) of Theorem 3.1. If there exists µ ∈

(0, 1) such that ηk exp (λ(tk − tk−1)) ≤ µ, then (2.1) has a unique
ω-periodic solution which is globally attractive.

Corollary 3.5. Assume (i)–(iv) in Theorem 3.1. If λ > 0 and there
exists µ ∈ (0, 1) such that ηk ≤ µ exp(−λω), then (2.1) has a
unique ω-periodic solution which is globally attractive.

Next, we shall apply the previous theoretical results to the
Hopfield neural networks

x′

i(t) = −ci(t)xi(t) +

n
j=1

aij(t)fj(xj(t)) + Ji(t)

if t ∈ [tk−1, tk),
xi(tk) = Gik(tk, xi(t−k ))

if i ∈ Λ, k ∈ N,

(3.4)

where Λ = {1, 2, . . . , n}, n ≥ 2, is the number of neurons in the
network, xi is the state of the ith unit at time t, aij is the connection
weight of the unit j on the unit i at time t, fj is the activation func-
tion of the neurons, Ji is the input of the unit i at time t, ci > 0 is
the rate with which the ith unit resets its potential to the resting
state in isolation when disconnected from the network and exter-
nal inputs at time t , and Gik is the impulsive function. Assume
(H1) ci, aij and Ji are all continuously periodic functions defined on

[t0, ∞) with common period ω > 0, i, j ∈ Λ;
(H2) Gik(t + ω, ·) = Gik(t, ·),Gi(k+q)(t, ·) = Gik(t, ·), tk+q =

tk + ω, k ∈ N, where q ∈ N;
(H3) There exist constants li > 0, Γik > 0 such that

|fi(u) − fi(v)| ≤ li|u − v|,

|Gik(t, u) − Gik(t, v)| ≤ Γik|u − v|,

(u, v) ∈ R2, i ∈ Λ, k ∈ N;

(H4) c∗

i = mint∈[t0,t0+ω] ci(t), a∗

ij = maxt∈[t0,t0+ω] |aij(t)|.

Theorem 3.6. Assume that (H1)–(H4) hold. Then there exists a
unique ω-periodic solution of (3.4) which is globally attractive pro-
vided there exist constants εi > 0, i ∈ Λ, and µ ∈ (0, 1) such that
max
i∈Λ

Γik


exp


−min

i∈Λ
c∗

i +

n
i=1

εi max
j∈Λ

a∗

ijlj
εj


(tk − tk−1)


≤ µ, k ∈ N. (3.5)

Proof. Let x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T be two
solutions of (2.1) with different initial values. Consider the Lya-
punov function V (t, x, y) =

n
i=1 εi|xi − yi|. By direct computa-

tions, we can deduce that

D+V (t, x, y) =

n
i=1

εisgn(xi − yi)


− ci(t)(xi − yi)

+

n
j=1

aij(t)[fj(xj) − fj(yj)]



≤ −

n
i=1

εici(t)|xi − yi| +

n
i=1

n
j=1

εi|aij(t)|lj|xj − yj|

≤ −


min
i∈Λ


c∗

i

n
i=1

εi|xi − yi|

+

n
i=1

εi


max
j∈Λ

a∗

ijlj
εj

 n
j=1

εj|xj − yj|

=


−min

i∈Λ
c∗

i +

n
i=1

εi max
j∈Λ

a∗

ijlj
εj



V (t, x, y). (3.6)
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In addition, we have

V (tk, x(tk), y(tk)) =

n
i=1

εi|xi(tk) − yi(tk)|

=

n
i=1

εi|Gik(tk, xi(t−k )) − Gik(tk, yi(t−k ))|

≤

n
i=1

εiΓik|xi(t−k ) − yi(t−k )|

≤


max
i∈Λ

Γik


V (t−k , x(t−k ), y(t−k )). (3.7)

Considering (3.5), (3.6), and (3.7), it is easy to check that all con-
ditions in Corollary 3.4 are satisfied. Thus (3.4) has a unique
ω-periodic solution which is globally attractive. �

Corollary 3.7. Assume that (H1)–(H4) hold. Then there exists a
unique ω-periodic solution of (3.4) which is globally attractive
provided there exist constants εi > 0, i ∈ Λ, andµ ∈ (0, 1) such that

min
i∈Λ

c∗

i <

n
i=1

εi max
j∈Λ

a∗

ijlj
εj

and

max
i∈Λ

Γik ≤ µ exp


min
i∈Λ

c∗

i −

n
i=1

εi max
j∈Λ

a∗

ijlj
εj


ω


, k ∈ N.

Remark 3.8. So far, many interesting results on stability of the
periodic solution of impulsive neural networks have been reported,
see Allegretto, Papaini, and Forti (2010) and Wang, Liao, and Li
(2007). One may find that most of the existing results focus on
the stability problem of the periodic solution from the impulsive
perturbations point of view. It is known that, in theory andpractice,
impulsive control has been widely used to stabilize some unstable
systems and synchronize some chaotic systems (see Antunes,
Hespanha, & Silvestre, 2013 and Stamova, 2009). The main idea
of impulsive control of RNNs is to introduce impulsive effects
into the topological structure of the networks and then change
the states of the systems. However, there is little work on the
impulsive control problem of periodic solution of neural networks
(Li & Song, 2013) due to the deficiency of theoretical work on
impulsive control systems. Based on Theorem 3.1, Corollary 3.7
in this paper provides a sufficient condition which can guarantee
the existence, uniqueness, and global attractiveness of the periodic
solution of impulsive neural networks even if the network models
may originally have no periodic solution or the periodicity may be
unknown, even if the system is originally unstable or divergent.

4. Examples

Example 4.1. Consider the 2D Hopfield neural networks


x′

1(t)
x′

2(t)


=


−0.3 + 0.01 sin t 0

0 −0.4 + 0.02 cos t


×


x1(t)
x2(t)


+


1 + 0.2 cos t −1 + 0.5 sin t
1 − 0.2 sin t 1 + 0.1 cos t


×


tanh(x1(t))
tanh(x2(t))


+


cos t
sin t


, t ≠ tk,

x1(tk)
x2(tk)


=


0.3 0
0 0.2


x1(t−k )

x2(t−k )


, k ∈ N,

(4.1)

where tk = (kπ)/8 for k ∈ N. Obviously, the right-hand side of
the first equation of (4.1) is 2π-periodic (i.e., ω = 2π ). Choose
q = 16, Γ1k = 0.3, Γ2k = 0.2, and l1 = l2 = 1. Then it can be
deduced that conditions (H1)–(H4) hold. In addition, let µ = 0.8
and ε1 = ε2 = 1. Then
max
i∈Λ

Γik


exp


−min

i∈Λ
c∗

i +

n
i=1

εi max
j∈Λ

a∗

ijlj
εj


(tk − tk−1)



= 0.3 exp

2.41π

8


≃ 0.7729 < µ, k ∈ N.

Hence, by Theorem 3.6, (4.1) has a unique 2π-periodic solution
which is globally attractive. This is shown in Fig. 4.1(a) and (b).
Moreover, if there is no impulsive effect, i.e., x(tk) = x(t−k ), then
Theorem 3.6 is invalid. In this case, it is interesting to see that (4.1)
has no 2π-periodic solution which is globally attractive. This is
shown in Fig. 4.1(c) and (d). This means that impulse contributes
to the existence and attractiveness of the unique periodic solution.

Example 4.2. Consider the 2D neural networks


x′

1(t)
x′

2(t)


=


−2 0
0 −3


x1(t)
x2(t)


+


−0.1 + 0.2 sin(π t) 0.15

−0.6 0.15 + 0.05 cos(π t)



×


sin(x1(t))
cos(x2(t))


+

−
5
2
cos(π t)

4
3
sin(π t)

 , t ≠ tk,


x1(tk)
x2(tk)


=


e0.5 0
0 e0.6


x1(t−k )

x2(t−k )


, k ∈ N,

(4.2)

where tk = 0.5k for k ∈ N. In this case, we know ω = 2.
Choose q = 4, Γ1k = e0.5, Γ2k = e0.6, and l1 = l2 = 1. Then
it can be deduced that conditions (H1)–(H4) hold. In addition, let
µ = 0.95, ε1 = 1.2, and ε2 = 0.6. Then
max
i∈Λ

Γik


exp


−min

i∈Λ
c∗

i +

n
i=1

εi max
j∈Λ

a∗

ijlj
εj


(tk − tk−1)


≃ 0.9048 < µ, k ∈ N.

Hence, by Theorem 3.6, (4.2) has a unique 2-periodic solution
which is globally attractive. This is shown in Fig. 4.2(a) and (b).
Moreover, if we let ε1 = ε2, then it can be derived that
max
i∈Λ

Γik


exp


−min

i∈Λ
c∗

i +

n
i=1

εi max
j∈Λ

a∗

ijlj
εj


(tk − tk−1)


≃ 1.0513 > 1, k ∈ N,

which implies that Theorem 3.6 is invalid. Thus the choice of εi is
very important in applications.

5. Conclusion

In this paper, we have proposed several sufficient conditions
for the existence and global attractiveness of unique periodic
solutions of impulsive differential equations. The results were
given from impulsive control and impulsive perturbation points
of view and established by Lyapunov’s second method and the
Banach contraction mapping principle. They complement and
improve some existing results. Numerical examples have been
given in order to demonstrate the effectiveness of the presented
theoretical results. Here we also point out that it is possible to
develop the ideas in this paper for the impulsive control problemof
periodic solutions for impulsive functional differential equations.
Some further research in this direction will be done in the future.
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Fig. 4.1. (a) State trajectory of (4.1) on [0, 50]. (b) Phase portrait of 2π-periodic solutions of (4.1) on [0, 100]. (c) State trajectory of (4.1) without impulses on [0, 50]. (d)
Phase portrait of (4.1) without impulses on [0, 100].
Fig. 4.2. (a) State trajectory of (4.2) on [0, 20]. (b) Phase portrait of 2π-periodic solutions of (4.2) on [0, 100].
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