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1. INTRODUCTION

A time scale is an arbitrary nonempty closed subset of the real numbers. For

a general introduction to the calculus of time scales we refer the reader to the text-

books [6, 7]. In [5] a differential calculus for multivariable functions on time scales

was presented by the authors in order to provide an instrument for introducing and

investigating partial dynamic equations on time scales. The present paper continues

[5] and discusses multiple integration on time scales.

In the original papers of B. Aulbach and S. Hilger [3, 10] on single variable time

scales calculus the concept of integral was defined by means of an antiderivative (or

pre-antiderivative) of a function and called the Cauchy integral. Next by S. Sailer

[12] the Darboux definition of the integral was used for integral calculus on time

scales. Further Riemann and Lebesgue definitions of the integral on time scales were

introduced in [4, 7, 8, 9] and a complete, to a considered extent, theory of integration

for single variable time scales was developed.

In [1], C. Ahlbrandt and C. Morian introduced double integrals over rectangles

on time scales as iterated integrals defined by using antiderivatives of single variable

functions, under the assumption that the order of integration in the iterated integral

can be reversed. In the present paper we introduce Darboux and Riemann definitions

of multiple integrals on time scales over arbitrary regions. For simplicity we confine

ourselves to functions of two variables. Also we consider only delta integrals. Nabla
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integrals and mixed integrals involving delta integration with respect to a part of the

variables and nabla integration with respect to the other part of the variables can be

investigated in a similar manner.

The paper is organized as follows. In Section 2 we introduce double Darboux and

Riemann ∆-integrals over rectangles. We show that the two definitions are equiva-

lent and give several Cauchy criteria for ∆-integrability. Some basic examples are

provided. Next, in Section 3 we present many properties of double ∆-integrals over

rectangles, among them integrability of the product and of the composite function,

additivity and linearity of the integral, and the mean value theorem. We also show

that every continuous function is ∆-integrable and establish a reduction formula for

a double integral to an iterated integral. Finally, in Section 4 we extend Riemann

∆-integrability over rectangles to more general sets, so-called Jordan ∆-measurable

sets. To this end, the concept of ∆-boundary of a set is introduced. We give two

definitions of the double integral over general sets and then prove their equivalence

for Jordan ∆-measurable sets. The main properties of the double integral over Jordan

∆-measurable sets are presented. Lebesgue’s definition of multiple integrals, line in-

tegrals, and Green’s formula for time scales will be presented in a forthcoming paper

of the authors.

2. DOUBLE RIEMANN INTEGRALS OVER RECTANGLES

Let T1 and T2 be two time scales. For i = 1, 2 let σi, ρi, and ∆i denote the

forward jump operator, the backward jump operator, and the delta differentiation

operator, respectively, on Ti. Suppose a < b are points in T1, c < d are points in T2,

[a, b) is the half-closed bounded interval in T1, and [c, d) is the half-closed bounded

interval in T2. Let us introduce a “rectangle” in T1 × T2 by

R = [a, b)× [c, d) = {(t, s) : t ∈ [a, b) s ∈ [c, d)} .

Let

{t0, t1, . . . , tn} ⊂ [a, b], where a = t0 < t1 < . . . < tn = b

and

{s0, s1, . . . , sk} ⊂ [c, d], where c = s0 < s1 < . . . < sk = d.

The numbers n and k may be arbitrary positive integers. We call the collection of

intervals

P1 = {[ti−1, ti) : 1 ≤ i ≤ n}

a ∆-partition of [a, b) and denote the set of all ∆-partitions of [a, b) by P([a, b)).

Similarly, the collection of intervals

P2 = {[sj−1, sj) : 1 ≤ j ≤ k}
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is called a ∆-partition of [c, d) and the set of all ∆-partitions of [c, d) is denoted by

P([c, d)). Let us set

(2.1) Rij = [ti−1, ti)× [sj−1, sj), where 1 ≤ i ≤ n, 1 ≤ j ≤ k.

We call the collection

(2.2) P = {Rij : 1 ≤ i ≤ n, 1 ≤ j ≤ k}

a ∆-partition of R, generated by the ∆-partitions P1 and P2 of [a, b) and [c, d),

respectively, and write P = P1 × P2. The rectangles Rij, 1 ≤ i ≤ n, 1 ≤ j ≤ k,

are called the subrectangles of the partition P . The set of all ∆-partitions of R is

denoted by P(R).

Let f : R→ R be a bounded function. We set

M = sup {f(t, s) : (t, s) ∈ R} and m = inf {f(t, s) : (t, s) ∈ R}

and for 1 ≤ i ≤ n, 1 ≤ j ≤ k,

Mij = sup {f(t, s) : (t, s) ∈ Rij} and mij = inf {f(t, s) : (t, s) ∈ Rij} .

The upper Darboux ∆-sum U(f, P ) and the lower Darboux ∆-sum L(f, P ) of f with

respect to P are defined by

U(f, P ) =
n∑
i=1

k∑
j=1

Mij(ti − ti−1)(sj − sj−1)

and

L(f, P ) =
n∑
i=1

k∑
j=1

mij(ti − ti−1)(sj − sj−1).

Note that

U(f, P ) ≤
n∑
i=1

k∑
j=1

M(ti − ti−1)(sj − sj−1) = M(b− a)(d− c)

and likewise L(f, P ) ≥ m(b− a)(d− c) so that

(2.3) m(b− a)(d− c) ≤ L(f, P ) ≤ U(f, P ) ≤M(b− a)(d− c).

The upper Darboux ∆-integral U(f) of f over R and the lower Darboux ∆-integral

L(f) of f over R are defined by

U(f) = inf {U(f, P ) : P ∈ P(R)} and L(f) = sup {L(f, P ) : P ∈ P(R)} .

In view of (2.3), U(f) and L(f) are finite real numbers. We will see in Theorem 2.5

that L(f) ≤ U(f).

Definition 2.1. We say that f is ∆-integrable (or delta integrable) over R provided

L(f) = U(f). In this case, we write
∫ ∫

R
f(t, s)∆1t∆2s for this common value. We

call this integral the Darboux ∆-integral.
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Riemann’s definition of the integral is a little different (see Definition 2.13 below),

but we will show in Theorem 2.14 that the two definitions are equivalent. For this

reason, we will also call the integral defined in Definition 2.1 the Riemann ∆-integral.

Let P,Q ∈ P(R) and P = P1 × P2, Q = Q1 ×Q2, where

P1, Q1 ∈ P([a, b)) and P2, Q2 ∈ P([c, d)).

We say that Q is a refinement of P if Q1 is a refinement of P1 and Q2 is a refinement

of P2.

Lemma 2.2. Let f be a bounded function on R. If P and Q are ∆-partitions of R

and Q is a refinement of P , then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ),

i.e., refining of a partition increases the lower sum and decreases the upper sum.

Proof. The middle inequality is obvious. The proofs of the first and third inequalities

are similar, so we only prove L(f, P ) ≤ L(f,Q). An induction argument shows that

we may assume that Q has only one more element than P . If P is given by

P = {R1, R2, . . . , RN}

(every partition (2.2) can be labeled in this form, and the order in which those

subrectangles are labeled makes no difference), then there exists some k ∈ {1, . . . , N}
such that Q is given by

Q = {R1, . . . , Rk−1, R
′
k, R

′′
k, Rk+1, . . . , RN} ,

where R′k ∪ R′′k = Rk. Now setting mk = inf(t,s)∈Rk f(t, s), m
(1)
k = inf(t,s)∈R′k f(t, s),

and m
(2)
k = inf(t,s)∈R′′k f(t, s), we have m

(1)
k ≥ mk, m

(2)
k ≥ mk so that

L(f,Q)− L(f, P ) = m
(1)
k m(R′k) +m

(2)
k m(R′′k)−mkm(Rk)

≥ mkm(R′k) +mkm(R′′k)−mkm(Rk) = 0,

where for a given rectangle V = [α, β) × [γ, δ) ⊂ T1 × T2 the “area” of V , i.e.,

(β − α)(δ − γ), is denoted by m(V ). Therefore L(f, P ) ≤ L(f,Q).

Definition 2.3. Suppose P = P1 × P2 and Q = Q1 × Q2, where P1, Q1 ∈ P([a, b))

and P2, Q2 ∈ P([c, d)), are two ∆-partitions of R = [a, b) × [c, d). If P1 is generated

by a set

{t0, t1, . . . , tn} ⊂ [a, b], where a = t0 < t1 < . . . < tn = b

and Q1 is generated by a set

{τ0, τ1, . . . , τp} ⊂ [a, b], where a = τ0 < τ1 < . . . < τp = b,

then by P1 +Q1 we denote the ∆-partition of [a, b) generated by the set

{t0, t1, . . . , tn} ∪ {τ0, τ1, . . . , τp} .
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Similarly we define P2 +Q2, a ∆-partition of [c, d). Then we denote the ∆-partition

(P1 +Q1)× (P2 +Q2) of R by P +Q.

Obviously P +Q is a refinement of both P and Q.

Lemma 2.4. If f is a bounded function on R and if P and Q are any two ∆-partitions

of R, then L(f, P ) ≤ U(f,Q), i.e., every lower sum is less than or equal to every upper

sum.

Proof. Since P +Q is a ∆-partition of R which is a refinement of both P and Q, we

can apply Lemma 2.2 to obtain

L(f, P ) ≤ L(f, P +Q) ≤ U(f, P +Q) ≤ U(f,Q),

i.e., L(f, P ) ≤ U(f,Q).

Theorem 2.5. If f is a bounded function on R, then L(f) ≤ U(f).

Proof. Fix P ∈ P(R). By Lemma 2.4, L(f, P ) is a lower bound for the set

{U(f,Q) : Q ∈ P(R)} .

Therefore L(f, P ) must be less than or equal to the greatest lower bound (infimum)

of this set. That is,

(2.4) L(f, P ) ≤ U(f).

Now (2.4) shows that U(f) is an upper bound for the set

{L(f, P ) : P ∈ P(R)}

so that U(f) ≥ L(f).

It follows that

L(f, P ) ≤ L(f) ≤ U(f) ≤ U(f,Q) for all P,Q ∈ P(R).

In particular

(2.5) L(f, P ) ≤ L(f) ≤ U(f) ≤ U(f, P ) for all P ∈ P(R).

From (2.5) we get the following result.

Theorem 2.6. If L(f, P ) = U(f, P ) for some P ∈ P(R), then the function f is

∆-integrable over R and∫ ∫
R

f(t, s)∆1t∆2s = L(f, P ) = U(f, P ).

The next theorem gives a “Cauchy criterion” for integrability.
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Theorem 2.7. A bounded function f on R is ∆-integrable if and only if for each

ε > 0 there exists P ∈ P(R) such that

(2.6) U(f, P )− L(f, P ) < ε.

Proof. Suppose that f is ∆-integrable and consider ε > 0. By the definitions of

supremum and infimum, there exist H,Q ∈ P(R) satisfying

L(f,H) > L(f)− ε

2
and U(f,Q) < U(f) +

ε

2
.

Let now P = H + Q (for the definition of P + Q see Definition 2.3) which is a

refinement of both H and Q. Therefore we can apply Lemma 2.2 to obtain

U(f, P )−L(f, P ) ≤ U(f,Q)−L(f,H) < U(f) +
ε

2
−
(
L(f)− ε

2

)
= U(f)−L(f) + ε.

Since f is ∆-integrable, U(f) = L(f) so that (2.6) holds.

Conversely, suppose that for each ε > 0 the inequality (2.6) holds for some

P ∈ P(R). Then we have

U(f) ≤ U(f, P ) = U(f, P )− L(f, P ) + L(f, P ) < ε+ L(f, P ) ≤ ε+ L(f).

Since ε > 0 is arbitrary, it follows that U(f) ≤ L(f), and in view of Theorem 2.5 we

conclude that U(f) = L(f), i.e., f is ∆-integrable.

We need the following auxiliary result. The proof can be found in [7, 9].

Lemma 2.8. For every δ > 0 there exists at least one partition P1 ∈ P([a, b)) gener-

ated by a set

{t0, t1, . . . , tn} ⊂ [a, b], where a = t0 < t1 < . . . < tn = b

such that for each i ∈ {1, 2, . . . , n} either

ti − ti−1 ≤ δ

or

ti − ti−1 > δ and ρ1(ti) = ti−1.

Definition 2.9. We denote by Pδ([a, b)) the set of all P1 ∈ P([a, b)) that possess the

property indicated in Lemma 2.8. Similarly we define Pδ([c, d)). Further, by Pδ(R)

we denote the set of all P ∈ P(R) such that

P = P1 × P2, where P1 ∈ Pδ([a, b)) and P2 ∈ Pδ([c, d)).

Lemma 2.10. Let P 0 ∈ P(R) be given by P 0 = P 0
1 × P 0

2 in which P 0
1 ∈ P([a, b)) is

generated by a set

A0
1 =

{
t00, t

0
1, . . . , t

0
n

}
⊂ [a, b], where a = t00 < t01 < . . . < t0n = b
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and P 0
2 ∈ P([c, d)) is generated by a set

A0
2 =

{
s0

0, s
0
1, . . . , s

0
l

}
⊂ [c, d], where c = s0

0 < s0
1 < . . . < s0

l = d.

Then for each P ∈ Pδ(R) we have

L(f, P 0 + P )− L(f, P ) ≤ (M −m)D(n+ l − 2)δ

and

U(f, P )− U(f, P 0 + P ) ≤ (M −m)D(n+ l − 2)δ,

where the sum P 0 + P of the two partitions P 0, P ∈ P(R) is defined according to

Definiton 2.3, m and M are the infimum and supremum of f on R, respectively, and

D = max{b− a, d− c}.

Proof. Suppose the partition P is given by P = P1 × P2 in which P1 ∈ P([a, b)) is

generated by a set

A1 = {t0, t1, . . . , tp} ⊂ [a, b], where a = t0 < t1 < . . . < tp = b

and P2 ∈ P([c, d)) is generated by a set

A2 = {s0, s1, . . . , sq} ⊂ [c, d], where c = s0 < s1 < . . . < sq = d.

Let Q = P 0 + P = Q1 × Q2, where Q1 ∈ P([a, b)) and Q2 ∈ P([c, d)) are generated

by the sets

B1 = A0
1 ∪ A1 and B2 = A0

2 ∪ A2,

respectively. First we consider two particular cases.

(i) If B1 has one more point, say t′, than A1 and B2 = A2, then t′ ∈ (tk−1, tk) for some

k ∈ {1, 2, . . . , p}, where tk − tk−1 ≤ δ. Indeed, if tk − tk−1 > δ, then by the condition

P ∈ Pδ(R) we have ρ1(tk) = tk−1 and therefore (tk−1, tk) = ∅. Now denoting by mkj,

m
(1)
kj , and m

(2)
kj the infima of f on

Rkj = [tk−1, tk)× [sj−1, sj), R
(1)
kj = [tk−1, t

′)× [sj−1, sj), R
(2)
kj = [t′, tk)× [sj−1, sj),

respectively, we have

m
(1)
kj ≥ mkj, m

(2)
kj ≥ mkj, m

(1)
kj −mkj ≤M −m, m

(2)
kj −mkj ≤M −m,

and m(Rkj) = m(R
(1)
kj ) +m(R

(2)
kj ), so that

L(f,Q)− L(f, P ) =

q∑
j=1

{
m

(1)
kj m(R

(1)
kj ) +m

(2)
kj m(R

(2)
kj )−mkjm(Rkj)

}
=

q∑
j=1

{
(m

(1)
kj −mkj)m(R

(1)
kj ) + (m

(2)
kj −mkj)m(R

(2)
kj )
}

≤ (M −m)

q∑
j=1

{
m(R

(1)
kj ) +m(R

(2)
kj )
}
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= (M −m)

q∑
j=1

m(Rkj) = (M −m)

q∑
j=1

(tk − tk−1)(sj − sj−1)

= (M −m)(tk − tk−1)(d− c) ≤ (M −m)Dδ.

(ii) If B1 = A1 and B2 has one more point than A2, then in a similar way as in the

case (i) we again get

L(f,Q)− L(f, P ) ≤ (M −m)Dδ.

Since B1 has at most n− 1 points that are not in A1 and B2 has at most l− 1 points

that are not in A2, an induction argument based on the cases (i) and (ii) shows that

L(f,Q)− L(f, P ) ≤ (M −m)D(n+ l − 2)δ.

The proof for the other inequality is similar.

The following is another Cauchy criterion for integrability.

Theorem 2.11. A bounded function f on R is ∆-integrable if and only if for each

ε > 0 there exists δ > 0 such that

(2.7) P ∈ Pδ(R) implies U(f, P )− L(f, P ) < ε.

Proof. Theorem 2.7 shows that the ε-δ condition (2.7) implies ∆-integrability. Con-

versely, suppose that f is ∆-integrable over R. Let ε > 0 and select P 0 ∈ P(R) such

that

U(f, P 0)− L(f, P 0) <
ε

2
.

Suppose P 0 is given by P 0 = P 0
1 × P 0

2 in which P 0
1 ∈ P([a, b)) is generated by a set{

t00, t
0
1, . . . , t

0
n

}
⊂ [a, b], where a = t00 < t01 < . . . < t0n = b

and P 0
2 ∈ P([c, d)) is generated by a set{

s0
0, s

0
1, . . . , s

0
l

}
⊂ [c, d], where c = s0

0 < s0
1 < . . . < s0

l = d.

Let (without loss of generality f is not identically constant)

δ =
ε

4(n+ l)(M −m)D
, where D = max{b− a, d− c}

and m and M are the infimum and supremum of f on R, respectively. Then for any

P ∈ Pδ(R) we have, by Lemma 2.10,

L(f, P 0 + P )− L(f, P ) ≤ (M −m)D(n+ l − 2)δ

= (M −m)D(n+ l − 2)
ε

4(n+ l)(M −m)D

=
(n+ l − 2)ε

4(n+ l)
<

ε

4
.
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By Lemma 2.2 we have L(f, P 0) ≤ L(f, P 0 + P ), and so

L(f, P 0)− L(f, P ) <
ε

4
and similarly U(f, P )− U(f, P 0) <

ε

4
.

Hence

U(f, P )− L(f, P ) < U(f, P 0)− L(f, P 0) +
ε

2
<
ε

2
+
ε

2
= ε.

Thus we have verified (2.7).

Theorem 2.12. For every bounded function f on R the Darboux ∆-sums L(f, P )

and U(f, P ) evaluated for P ∈ Pδ(R) have limits as δ → 0, uniformly with respect to

P , and

lim
δ→0

L(f, P ) = L(f) and lim
δ→0

U(f, P ) = U(f).

Proof. Let us prove the statement for lower Darboux ∆-sums (the proof for upper

Darboux ∆-sums is analogous). Fix an ε > 0 and choose a partition P 0 ∈ P(R) such

that

L(f, P 0) > L(f)− ε, that is, L(f)− L(f, P 0) < ε.

Let P 0 be described as in Lemma 2.10. Then for any P ∈ Pδ(R) we have, by Lemma

2.10,

L(f, P 0 + P )− L(f, P ) ≤ (M −m)D(n+ l − 2)δ.

Since P 0 + P is a refinement of P 0, we have L(f, P 0) ≤ L(f, P 0 + P ) by Lemma 2.2.

Thus

L(f)−ε < L(f, P 0) ≤ L(f, P 0+P ) ≤ L(f) and hence L(f, P 0+P )−L(f, P 0) < ε.

Therefore

|L(f)− L(f, P )| ≤
∣∣L(f)− L(f, P 0)

∣∣+
∣∣L(f, P 0)− L(f, P 0 + P )

∣∣
+
∣∣L(f, P 0 + P )− L(f, P )

∣∣
< ε+ ε+ (M −m)D(n+ l − 2)δ.

Taking δ = ε/[(M −m)D(n + l − 2)] (since the case when f is constant is obvious,

we may assume that M −m 6= 0), we get |L(f)− L(f, P )| < 3ε. This completes the

proof.

We now give Riemann’s definition of integrability.

Definition 2.13. Let f be a bounded function on R and P ∈ P(R) be given by

(2.1), (2.2). In each “rectangle” Rij with 1 ≤ i ≤ n, 1 ≤ j ≤ k, choose an arbitrary

point (ξij, ηij) and form the sum

(2.8) S =
n∑
i=1

k∑
j=1

f(ξij, ηij)(ti − ti−1)(sj − sj−1).
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We call S a Riemann ∆-sum of f corresponding to P ∈ P(R). We say that f is

Riemann ∆-integrable over R if there exists a number I with the following property:

For each ε > 0 there exists δ > 0 such that

|S − I| < ε

for every Riemann ∆-sum S of f corresponding to any P ∈ Pδ(R) independent of

the way in which we choose (ξij, ηij) ∈ Rij for 1 ≤ i ≤ n, 1 ≤ j ≤ k. The number I

is the Riemann ∆-integral of f over R, and we write I = limδ→0 S.

It is easy to see that the number I from Definition 2.13 is unique if it exists. Hence

the Riemann ∆-integral is well defined. Note also that in the Riemann definition of

the integral we need not assume the boundedness of f in advance. However, it easily

follows that the Riemann integrability of a function f over R implies its boundedness

on R.

Theorem 2.14. A bounded function f on R is Riemann ∆-integrable if and only if

it is Darboux ∆-integrable, in which case the values of the integrals are equal.

Proof. Suppose first that f is Darboux ∆-integrable over R in the sense of Definition

2.1. Let ε > 0 and δ > 0 be chosen so that (2.7) of Theorem 2.11 holds. We show

that

(2.9)

∣∣∣∣S − ∫ ∫
R

f(t, s)∆1t∆2s

∣∣∣∣ < ε

for every Riemann ∆-sum (2.8) associated with some P ∈ Pδ(R). Clearly we have

L(f, P ) ≤ S ≤ U(f, P ) and so (2.9) follows from the inequalities

U(f, P ) < L(f, P ) + ε ≤ L(f) + ε =

∫ ∫
R

f(t, s)∆1t∆2s+ ε

and

L(f, P ) > U(f, P )− ε ≥ U(f)− ε =

∫ ∫
R

f(t, s)∆1t∆2s− ε.

This proves (2.9) and hence f is Riemann ∆-integrable and I =
∫ ∫

R
f(t, s)∆1t∆2s.

Now suppose that f is Riemann ∆-integrable in the sense of Definition 2.13.

Select any P ∈ Pδ(R) of the type (2.1), (2.2) and for each i ∈ {1, 2, . . . , n} and

j ∈ {1, 2, . . . , k} choose (ξij, ηij) ∈ Rij so that f(ξij, ηij) < mij + ε. The Riemann

∆-sum S for this choice of points (ξij, ηij) satisfies

S < L(f, P ) + ε(b− a)(d− c) as well as |S − I| < ε.

It follows that

L(f) ≥ L(f, P ) > S − ε(b− a)(d− c) > I − ε− ε(b− a)(d− c).
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Since ε > 0 is arbitrary, we conclude that L(f) ≥ I. A similar argument shows that

U(f) ≤ I. Since L(f) ≤ U(f), we obtain

L(f) = U(f) = I.

This shows that f is Darboux ∆-integrable and
∫ ∫

R
f(t, s)∆1t∆2s = I.

In our definition of
∫ ∫

R
f(t, s)∆1t∆2s with R = [a, b) × [c, d) we assumed that

a < b and c < d. We extend the definition to the case a ≤ b and c ≤ d by setting

(2.10)

∫ ∫
R

f(t, s)∆1t∆2s = 0 if a = b or c = d.

Theorem 2.15. Assume a, b ∈ T1 with a ≤ b and c, d ∈ T2 with c ≤ d. Every

constant function

f(t, s) ≡ A for (t, s) ∈ R = [a, b)× [c, d)

is ∆-integrable over R and

(2.11)

∫ ∫
R

f(t, s)∆1t∆2s = A(b− a)(d− c).

Proof. Let a < b and c < d. Consider a partition P of R = [a, b)× [c, d) of the type

(2.1), (2.2). Since

Mij = mij = A for all 1 ≤ i ≤ n, 1 ≤ j ≤ k,

we have

U(f, P ) = L(f, P ) = A(b− a)(d− c),

and Theorem 2.6 shows that f is ∆-integrable and that (2.11) holds. For a = b or

c = d, (2.11) follows by (2.10). Note that every Riemann ∆-sum of f associated with

P is also equal to A(b− a)(d− c).

Theorem 2.16. Let t0 ∈ T1 and s0 ∈ T2. Every function f : T1 × T2 → R is

∆-integrable over R(t0, s0) = [t0, σ1(t0))× [s0, σ2(s0)), and

(2.12)

∫ ∫
R(t0,s0)

f(t, s)∆1t∆2s = µ1(t0)µ2(s0)f(t0, s0).

Proof. If µ1(t0) = 0 or µ2(s0) = 0, then (2.12) is obvious as both sides of (2.12) are

equal to zero in this case. If µ1(t0) > 0 and µ2(s0) > 0, then a single partition of

R(t0, s0) is P = {[t0, σ1(t0))× [s0, σ2(s0))}, and since

[t0, σ1(t0))× [s0, σ2(s0)) =
{

(t0, s0)
}
,

we have

U(f, P ) =
(
σ1(t0)− t0

) (
σ2(s0)− s0

)
f(t0, s0) = µ1(t0)µ2(s0)f(t0, s0) = L(f, P ).
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Therefore, Theorem 2.6 shows that f is ∆-integrable over R(t0, s0) and (2.12) holds.

Note that the Riemann ∆-sum associated with the above partition is also equal to

µ1(t0)µ2(s0)f(t0, s0).

Theorem 2.17. Let a, b ∈ T1 with a ≤ b and c, d ∈ T2 with c ≤ d. Then we have the

following.

(i) If T1 = T2 = R, then a bounded function f on R = [a, b)× [c, d) is ∆-integrable

if and only if f is Riemann integrable on R in the classical sense, and in this

case ∫ ∫
R

f(t, s)∆1t∆2s =

∫ ∫
R

f(t, s)dtds,

where the integral on the right is the ordinary Riemann integral.

(ii) If T1 = T2 = Z, then every function f defined on R = [a, b)×[c, d) is ∆-integrable

over R, and

(2.13)

∫ ∫
R

f(t, s)∆1t∆2s =


b−1∑
k=a

d−1∑
l=c

f(k, l) if a < b and c < d

0 if a = b or c = d.

Proof. Clearly, the above given Definition 2.1 and Definition 2.13 of the ∆-integral

coincide in case T1 = T2 = R with the usual Darboux and Riemann definitions of

the integral, respectively (see e.g., [2, 11]). Notice that the classical definitions of

Darboux’s and Riemann’s integral do not depend on whether the subrectangles of

the partition are taken closed, half-closed, or open. Moreover, if T1 = T2 = R, then

Pδ(R) consists of all partitions of R with norm (mesh) less than or equal to δ
√

2. So

part (i) is valid.

To prove part (ii), let a < b and c < d. Then b = a + p and d = c + q for some

p, q ∈ N. Consider the partition P ∗ of R = [a, b) × [c, d) given by (2.1), (2.2) with

n = p, k = q, and

t0 = a, t1 = a+ 1, . . . , tp = a+ p and s0 = c, s1 = c+ 1, . . . , sq = c+ q.

Then Rij contains the single point (ti−1, sj−1):

Rij = [ti−1, ti)× [sj−1, sj) = {(ti−1, sj−1)} for all 1 ≤ i ≤ p, 1 ≤ j ≤ q.

Therefore

U(f, P ∗) =

p∑
i=1

q∑
j=1

Mij(ti − ti−1)(sj − sj−1) =

p∑
i=1

q∑
j=1

f(ti−1, sj−1)

and

L(f, P ∗) =

p∑
i=1

q∑
j=1

mij(ti − ti−1)(sj − sj−1) =

p∑
i=1

q∑
j=1

f(ti−1, sj−1)
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so that

U(f, P ∗) = L(f, P ∗) =

p∑
i=1

q∑
j=1

f(ti−1, sj−1) =
b−1∑
k=a

d−1∑
l=c

f(k, l).

Hence Theorem 2.6 shows that f is ∆-integrable over R = [a, b) × [c, d) and (2.13)

holds for a < b and c < d. If a = b or c = d, then relation (2.10) shows the validity

of (2.13).

Remark 2.18. In the two variable time scales case four types of integrals can be

defined:

(i) ∆∆-integral over [a, b)× [c, d), which is introduced by using partitions consisting

of subrectangles of the form [α, β)× [γ, δ);

(ii) ∇∇-integral over (a, b] × (c, d], which is defined by using subrectangles of the

form (α, β]× (γ, δ];

(iii) ∆∇-integral over [a, b) × (c, d], which is defined by using subrectangles of the

form [α, β)× (γ, δ];

(iv) ∇∆-integral over (a, b] × [c, d), which is defined by using subrectangles of the

form (α, β]× [γ, δ).

For brevity the first integral is called simply as ∆-integral, and in this paper we are

dealing solely with such ∆-integrals. However, the presented theory can be easily

adapted to study any of the four types of integrals described above.

3. PROPERTIES OF DOUBLE INTEGRALS OVER RECTANGLES

In this section we use the same notations as those in the preceding section. For

given time scales T1 and T2, the set

T1 × T2 = {(t, s) : t ∈ T1, s ∈ T2}

is a complete metric space with the metric d defined by

d(x, y) =
√

(t− t′)2 + (s− s′)2 for x = (t, s), y = (t′, s′) ∈ T1 × T2,

and also with the equivalent metric

d(x, y) = max {|t− t′|, |s− s′|} .

A function f : T1×T2 → R is said to be continuous at x ∈ T1×T2 if for every ε > 0

there exists δ > 0 such that

|f(x)− f(y)| < ε

for all points y ∈ T1 × T2 satisfying d(x, y) < δ.

If x is an isolated point of T1×T2, then our definition implies that every function

f : T1 × T2 → R is continuous at x. For, no matter which ε > 0 we choose, we can

pick δ > 0 so that the only point y ∈ T1 × T2 for which d(x, y) < δ is y = x; then
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|f(x) − f(y)| = 0 < ε. In particular, every function f : Z × Z → R is continuous at

each point of Z× Z.

Theorem 3.1. Every continuous function on K = [a, b]× [c, d] is ∆-integrable over

R = [a, b)× [c, d).

Proof. In order to apply Theorem 2.7, let ε > 0. Since f is continuous, it is uniformly

continuous on the compact subset K of T1 × T2. Therefore there exists δ > 0 such

that

(3.1)

(t, s), (t′, s′) ∈ R and max {|t− t′|, |s− s′|} ≤ δ

imply |f(t, s)− f(t′, s′)| < ε
3(b−a+1)(d−c+1)

.

Consider any P ∈ Pδ(R) given by (2.1), (2.2) and let R̃ij = [ti−1, ρ1(ti)]× [sj−1, ρ2(sj)]

and

(3.2) M̃ij = sup
{
f(t, s) : (t, s) ∈ R̃ij

}
and m̃ij = inf

{
f(t, s) : (t, s) ∈ R̃ij

}
.

Then, since Rij ⊂ R̃ij, we have

m̃ij ≤ mij ≤Mij ≤ M̃ij for all 1 ≤ i ≤ n, 1 ≤ j ≤ k.

Therefore, taking into account that f assumes its maximum and minimum on each

compact rectangle R̃ij, it follows from (3.1) that

U(f, P )− L(f, P ) =
n∑
i=1

k∑
j=1

(Mij −mij)(ti − ti−1)(sj − sj−1)

≤
n∑
i=1

k∑
j=1

(M̃ij − m̃ij)(ti − ti−1)(sj − sj−1)

=
∑

ti−ti−1≤δ

∑
sj−sj−1≤δ

(M̃ij − m̃ij)(ti − ti−1)(sj − sj−1)

+
∑

ti−ti−1>δ

∑
sj−sj−1≤δ

(M̃ij − m̃ij)(ti − ti−1)(sj − sj−1)

+
∑

ti−ti−1≤δ

∑
sj−sj−1>δ

(M̃ij − m̃ij)(ti − ti−1)(sj − sj−1)

+
∑

ti−ti−1>δ

∑
sj−sj−1>δ

(M̃ij − m̃ij)(ti − ti−1)(sj − sj−1)

<
3ε

3(b− a+ 1)(d− c+ 1)

n∑
i=1

k∑
j=1

(ti − ti−1)(sj − sj−1)

=
ε(b− a)(d− c)

(b− a+ 1)(d− c+ 1)
< ε,
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where we used the fact that if ti − ti−1 > δ, then ρ1(ti) = ti−1 and if sj − sj−1 > δ,

then ρ2(sj) = sj−1, and hence

M̃ij − m̃ij <
ε

3(b− a+ 1)(d− c+ 1)

in the first three sums, and M̃ij−m̃ij = 0 in the fourth sum. Thus U(f, P )−L(f, P ) <

ε so that Theorem 2.7 yields that f is ∆-integrable.

In the following theorem we say as usual that a function ϕ : [α, β] ⊂ R → R

satisfies a Lipschitz condition if there exists a constant B > 0 (the Lipschitz constant)

such that

|ϕ(u)− ϕ(v)| ≤ B |u− v| for all u, v ∈ [α, β].

Theorem 3.2. Let f be bounded and ∆-integrable over R = [a, b)× [c, d) and let M

and m be its supremum and infimum over R, respectively. Let, further, ϕ : [m,M ]→
R be a function satisfying a Lipschitz condition. Then the composite function h = ϕ◦f
is ∆-integrable over R.

Proof. Let ε > 0. By Theorem 2.7 there exists P ∈ P(R) given by (2.1), (2.2) such

that

U(f, P )− L(f, P ) <
ε

B
,

where B is a Lipschitz constant for ϕ. Let Mij and mij be the supremum and infimum

of f on Rij, respectively, and let M∗
ij and m∗ij be the corresponding numbers for h.

Since ϕ satisfies a Lipschitz condition with Lipschitz constant B, we find that

h(t, s)− h(t′, s′) ≤ |h(t, s)− h(t′, s′)| = |ϕ(f(t, s))− ϕ(f(t′, s′))|

≤ B |f(t, s)− f(t′, s′)| ≤ B (Mij −mij)

holds for all (t, s), (t′, s′) ∈ Rij. Hence M∗
ij −m∗ij ≤ B(Mij −mij) because there exist

two sequences {(tp, sp)} and {(t′p, s′p)} of points in Rij such that

h(tp, sp)→M∗
ij and h(t′p, s

′
p)→ m∗ij as p→∞.

Consequently,

U(h, P )− L(h, P ) =
n∑
i=1

k∑
j=1

(M∗
ij −m∗ij)(ti − ti−1)(sj − sj−1)

≤ B

n∑
i=1

k∑
j=1

(Mij −mij)(ti − ti−1)(sj − sj−1) = B [U(f, P )− L(f, P )] < ε.

Therefore h is ∆-integrable by Theorem 2.7.

Theorem 3.3. Let f be a bounded function that is ∆-integrable over R = [a, b)×[c, d).

Further, let a′, b′ ∈ [a, b] with a′ < b′ and c′, d′ ∈ [c, d] with c′ < d′. Then f is ∆-

integrable over R′ = [a′, b′)× [c′, d′).
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Proof. Let ε > 0 and P ∈ P(R) be such that U(f, P )−L(f, P ) < ε. Let P = P1×P2,

where P1 ∈ P([a, b)) and P2 ∈ P([c, d)). Suppose P1 is generated by the set

{t0, t1, . . . , tn} ⊂ [a, b], where a = t0 < t1 < . . . < tn = b

and P2 is generated by the set

{s0, s1, . . . , sk} ⊂ [c, d], where c = s0 < s1 < . . . < sk = d.

Let P ′1 be the ∆-partition of [a, b) generated by the set

{t0, t1, . . . , tn} ∪ {a′, b′}

and P ′2 be the ∆-partition of [c, d) generated by the set

{s0, s1, . . . , sk} ∪ {c′, d′} .

Let P ′ = P ′1 × P ′2. then P ′ is a refinement of P and by Lemma 2.2 we also have

U(f, P ′) − L(f, P ′) < ε. Now consider P ′′ ∈ P(R′) consisting of all subrectangles of

P ′ belonging to R′. If Ũ and L̃ are upper and lower ∆-sums of f on R′ associated

with the partition P ′′, then

Ũ − L̃ ≤ U(f, P ′)− L(f, P ′) < ε,

and hence f is ∆-integrable over R′ by Theorem 2.7.

The majority of the properties of Riemann one-fold ∆-integrals over a half-closed

interval [a, b) as given in [7, 8] can be carried accordingly over to the Riemann double

∆-integral over a rectangle R = [a, b)× [c, d). Let us present here without proof only

the following six theorems.

Theorem 3.4 (Linearity). Let f and g be bounded ∆-integrable functions on R =

[a, b)× [c, d), and let α, β ∈ R. Then αf + βg is also ∆-integrable on R and∫ ∫
R

[αf(t, s) + βg(t, s)] ∆1t∆2s = α

∫ ∫
R

f(t, s)∆1t∆2s+ β

∫ ∫
R

g(t, s)∆1t∆2s.

Theorem 3.5. If f and g are bounded ∆-integrable functions on R, then so is their

product fg.

Theorem 3.6 (Additivity). Let the rectangle R = [a, b) × [c, d) be the union of two

disjoint rectangles of the forms R1 = [a1, b1)× [c1, d1) and R2 = [a2, b2)× [c2, d2). If

f is a bounded ∆-integrable function on each of R1 and R2, then f is ∆-integrable on

R and ∫ ∫
R

f(t, s)∆1t∆2s =

∫ ∫
R1

f(t, s)∆1t∆2s+

∫ ∫
R2

f(t, s)∆1t∆2s.
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Theorem 3.7. If f and g are bounded ∆-integrable functions on R satisfying the

inequality f(t, s) ≤ g(t, s) for all (t, s) ∈ R, then∫ ∫
R

f(t, s)∆1t∆2s ≤
∫ ∫

R

g(t, s)∆1t∆2s.

Theorem 3.8. If f is a bounded ∆-integrable function on R, then so is |f | and∣∣∣∣∫ ∫
R

f(t, s)∆1t∆2s

∣∣∣∣ ≤ ∫ ∫
R

|f(t, s)|∆1t∆2s.

Theorem 3.9 (Mean Value Theorem). Let f and g be bounded ∆-integrable functions

on R, and let g be nonnegative (or nonpositive) on R. Let us set

m = inf {f(t, s) : (t, s) ∈ R} and M = sup {f(t, s) : (t, s) ∈ R} .

Then there exists a real number Λ ∈ [m,M ] such that∫ ∫
R

f(t, s)g(t, s)∆1t∆2s = Λ

∫ ∫
R

g(t, s)∆1t∆2s.

An effective way for evaluating multiple integrals is to reduce them to iterated

(successive) integrations with respect to each of the variables.

Theorem 3.10. Let f be bounded and ∆-integrable over R = [a, b)×[c, d) and suppose

that the single integral

(3.3) I(t) =

∫ d

c

f(t, s)∆2s

exists for each t ∈ [a, b). Then the iterated integral∫ b

a

I(t)∆1t =

∫ b

a

∆1t

∫ d

c

f(t, s)∆2s

exists and the equality

(3.4)

∫ ∫
R

f(t, s)∆1t∆2s =

∫ b

a

∆1t

∫ d

c

f(t, s)∆2s

holds.

Proof. Let P ∈ P(R) be given by (2.1), (2.2). Obviously,

(3.5) mij ≤ f(t, s) ≤Mij on Rij,

where mij and Mij are the infimum and supremum of f on Rij, respectively. Choose

any point ξi ∈ [ti−1, ti) and set t = ξi in (3.5), then integrate (3.5) with respect to s

from sj−1 to sj. We obtain

(3.6) mij(sj − sj−1) ≤
∫ sj

sj−1

f(ξi, s)∆2s ≤Mij(sj − sj−1).
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Note that the integral in (3.6) exists because the existence of the integral in (3.6) is

assumed over the entire interval [c, d). Multiplying (3.6) by ti − ti−1 and summing

then with respect to i and j, where 1 ≤ i ≤ n and 1 ≤ j ≤ k, we obtain

(3.7) L(f, P ) ≤
n∑
i=1

I(ξi)(ti − ti−1) ≤ U(f, P ).

By the hypothesis the function f is ∆-integrable overR. Therefore taking into account

Theorem 2.11 and the inequalities

L(f, P ) ≤
∫ ∫

R

f(t, s)∆1t∆2s ≤ U(f, P ),

for arbitrary ε > 0 we can find δ > 0 such that P ∈ Pδ(R) implies∣∣∣∣L(f, P )−
∫ ∫

R

f(t, s)∆1t∆2s

∣∣∣∣ < ε

2
and

∣∣∣∣U(f, P )−
∫ ∫

R

f(t, s)∆1t∆2s

∣∣∣∣ < ε

2
.

For such partitions P we get from (3.7)∣∣∣∣∣
n∑
i=1

I(ξi)(ti − ti−1)−
∫ ∫

R

f(t, s)∆1t∆2s

∣∣∣∣∣ < ε.

This means, by the Riemann definition of the single integral, that the function I(t)

is ∆-integrable from a to b and∫ b

a

I(t)∆1t =

∫ ∫
R

f(t, s)∆1t∆2s.

Thus we have established the existence of the iterated integral and the equality (3.4).

Remark 3.11. It is evident from the proof of Theorem 3.10 that we can interchange

the rôles of t and s, that is, we may assume the existence of the double integral and

the existence of the single integral

(3.8) K(s) =

∫ b

a

f(t, s)∆1t

for each s ∈ [c, d). Then the theorem will state the existence of the iterated integral∫ d

c

K(s)∆2s =

∫ d

c

∆2s

∫ b

a

f(t, s)∆1t

and the equality

(3.9)

∫ ∫
R

f(t, s)∆1t∆2s =

∫ d

c

∆2s

∫ b

a

f(t, s)∆1t.

Remark 3.12. If together with the double integral
∫ ∫

R
f(t, s)∆1t∆2s there exist

both single integrals (3.3) and (3.8), then the formulas (3.4) and (3.9) will hold

simultaneously, i.e.,∫ b

a

∆1t

∫ d

c

f(t, s)∆2s =

∫ d

c

∆2s

∫ b

a

f(t, s)∆1t =

∫ ∫
R

f(t, s)∆1t∆2s.
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Remark 3.13. If the function f is continuous on [a, b]× [c, d], then the existence of

all the above mentioned integrals is guaranteed. In this case any of the formulas (3.4)

and (3.9) may be used to calculate the double integral.

4. DOUBLE INTEGRATION OVER MORE GENERAL SETS

So far the double Riemann ∆-integral
∫ ∫

R
f(t, s)∆1t∆2s has been defined only

for rectangles of the form R = [a, b) × [c, d) ⊂ T1 × T2. In this section we extend

the definition to more general sets in T1 × T2, called Jordan ∆-measurable sets. The

definition makes use of the ∆-boundary of a set E ⊂ T1 × T2.

Definition 4.1. Let E ⊂ T1 × T2. A point x = (t, s) ∈ T1 × T2 is called a boundary

point of E if every open (two-dimensional) ball B(x; r) = {y ∈ T1 × T2 : d(x, y) < r}
of radius r and center x contains at least one point of E and at least one point of

(T1×T2) \E. The set of all boundary points of E is called the boundary of E and is

denoted by ∂E.

Definition 4.2. Let E ⊂ T1×T2. A point x = (t, s) ∈ T1×T2 is called a ∆-boundary

point of E if every rectangle of the form V = [t, t′) × [s, s′) ⊂ T1 × T2 with t′ ∈ T1,

t′ > t and s′ ∈ T2, s′ > s, contains at least one point of E and at least one point of

(T1 × T2) \ E. The set of all ∆-boundary points of E is called the ∆-boundary of E

and is denoted by ∂∆E.

For i = 1, 2 let us introduce the set T0
i as follows: If Ti has a finite maximum

t∗, then T0
i = Ti \ {t∗}, otherwise T0

i = Ti. Briefly we will write T0
i = Ti \ {maxTi}.

Evidently, for every point t ∈ T0
i there exists an interval of the form [α, β) ⊂ Ti (with

α, β ∈ Ti and α < β) that contains the point t.

Definition 4.3. A point (t0, s0) ∈ T0
1×T0

2 is called ∆-dense if every rectangle of the

form V = [t0, t)× [s0, s) ⊂ T1×T2 with t ∈ T1, t > t0 and s ∈ T2, s > s0, contains at

least one point of T1 × T2 distinct from (t0, s0). Otherwise the point (t0, s0) is called

∆-scattered.

Note that in the single variable case ∆-dense points are precisely the right-dense

points, and ∆-scattered points are precisely the right-scattered points. Also, a point

(t0, s0) ∈ T0
1 × T0

2 is ∆-dense if and only if at least one of t0 and s0 is right-dense in

T1 and T2, respectively.

Obviously, each ∆-boundary point of E is a boundary point of E, but the converse

is not necessarily true. Also, each ∆-boundary point of E must belong to T0
1 × T0

2

and must be a ∆-dense point in T1 × T2.

Example 4.4. (i) For arbitrary time scales T1 and T2, the rectangle of the form

E = [a, b)× [c, d) ⊂ T1 × T2, where a, b ∈ T1, a < b and c, d ∈ T2, c < d, has no

∆-boundary point, i.e., ∂∆E = ∅.
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(ii) If T1 = T2 = Z, then any set E ⊂ Z × Z has no boundary as well as no

∆-boundary points.

(iii) Let T1 = T2 = R and a, b, c, d ∈ R with a < b and c < d. Let us set

E1 = [a, b)× [c, d), E2 = (a, b]× (c, d], and E3 = [a, b]× [c, d].

Then all three rectangles E1, E2, and E3 have the boundary consisting of the

union of all four sides of the rectangle. Moreover, ∂∆E1 is empty, ∂∆E2 consists

of the union of all four sides of the rectangle E2, and ∂∆E3 consists of the union

of the right and upper sides of E3.

(iv) Let T1 = T2 = [0, 1] ∪ {2}, where [0, 1] is the real number interval, and let

E = [0, 1)× [0, 1). Then the boundary ∂E of E consists of the union of the right

and upper sides of the rectangle E whereas ∂∆E = ∅.
(v) Let T1 = T2 = [0, 1] ∪

{
n
n+1

: n ∈ N
}

, where [0, 1] is the real number interval,

and let E = [0, 1] × [0, 1]. Then the boundary ∂E as well as the ∆-boundary

∂∆E of E conincide with the union of the right and upper sides of E.

Definition 4.5. Let E ⊂ T0
1×T0

2 be a bounded set and let ∂∆E be its boundary. Let

R = [a, b)× [c, d) be a rectangle in T1×T2 such that E∪∂∆E ⊂ R. Further, let P(R)

denote the set of all ∆-partitions of R of type (2.1), (2.2). For every P ∈ P(R) define

J∗(E,P ) to be the sum of the areas of those subrectangles of P which are entirely

contained in E, and let J∗(E,P ) be the sum of the areas of those subrectangles of P

each of which contains at least one point of E ∪ ∂∆E. The numbers

J∗(E) = sup {J∗(E,P ) : P ∈ P(R)} and J∗(E) = inf {J∗(E,P ) : P ∈ P(R)}

are called the (two-dimensional) inner and outer Jordan ∆-measure of E, respectively.

The set E is said to be Jordan ∆-measurable if J∗(E) = J∗(E), in which case this

common value is called the Jordan ∆-measure of E, denoted by J(E).

It is easy to verify that J∗(E) and J∗(E) depend only on E and not on the

rectangle R which contains E ∪ ∂∆E. Also, 0 ≤ J∗(E) ≤ J∗(E). If E has Jordan

∆-measure zero, then J∗(E) = J∗(E) = 0. Hence we have the following statement.

Lemma 4.6. A bounded set E ⊂ T0
1 × T0

2 has Jordan ∆-measure zero if and only if

for every ε > 0, the set E can be covered by a finite collection of rectangles of type

Vj = [αj, βj)× [γj, δj) ⊂ T1 ×T2, j = 1, . . . , n, the sum of whose areas is less than ε:

E ⊂
n⋃
j=1

Vj and
n∑
j=1

m(Vj) < ε.

It follows that if E is a set of Jordan ∆-measure zero, then so is any set Ẽ ⊂ E.

Lemma 4.7. The union of a finite number of bounded subsets E1, . . . , Em ⊂ T0
1×T0

2

each of which has Jordan ∆-measure zero is in turn a set of Jordan ∆-measure zero.
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Proof. Given ε > 0, we can construct for each k ∈ {1, . . . ,m} a finite covering

{V (k)
j }

nk
j=1 of Ek by rectangles of the needed type, the sum of whose areas is less than

ε/2k:

Ek ⊂
nk⋃
j=1

V
(k)
j and

nk∑
j=1

m
(
V

(k)
j

)
<

ε

2k
for all k ∈ {1, . . . ,m}.

The union of all these coverings is itself a finite covering of E = ∪mk=1Ek by rectangles,

and the sum of the areas of all rectangles is less than
∑∞

k=1 ε/2
k = ε. Since ε > 0

was arbitrary, the set E is of Jordan ∆-measure zero.

The empty set is regarded as a Jordan ∆-measurable set and its Jordan ∆-

measure is understood as being zero.

Lemma 4.8. For each point x0 = (t0, s0) ∈ T0
1 × T0

2, the single point set {x0} is

Jordan ∆-measurable, and its Jordan ∆-measure is given by

J
(
{x0}

)
=
(
σ1(t0)− t0

) (
σ2(s0)− s0

)
= µ1(t0)µ2(s0).

Proof. If t0 < σ1(t0) and s0 < σ2(s0), then {x0} = [t0, σ1(t0))× [s0, σ2(s0)). Therefore

{x0} is Jordan ∆-measurable with

J
(
{x0}

)
= m

(
[t0, σ1(t0))× [s0, σ2(s0))

)
=
(
σ1(t0)− t0

) (
σ2(s0)− s0

)
,

which is the desired result. Further consider the cases when at least one of t0 and s0 is

right-dense. To illustrate the proof, suppose t0 = σ1(t0) and s0 < σ2(s0). In this case

there exists a point t ∈ T1 sufficiently close to t0 and such that t > t0. Therefore the

rectangle [t0, t)×[s0, σ2(s0)) covers the point x0 and has a sufficiently small area. This

means that the single point set {x0} has Jordan ∆-measure zero in the considered

case. On the other hand, in this case we also have (σ1(t0) − t0)(σ2(s0) − s0) = 0 as

σ1(t0) = t0.

The following lemma is an immediate consequence of Lemma 4.8.

Lemma 4.9. Every ∆-dense point of T0
1 × T0

2 has Jordan ∆-measure zero.

Theorem 4.10. Let E ⊂ T0
1 ×T0

2 be a bounded set and ∂∆E denote its ∆-boundary.

Then we have

J∗(∂∆E) = J∗(E)− J∗(E).

Hence E is Jordan ∆-measurable iff its ∆-boundary ∂∆E has Jordan ∆-measure zero.

Proof. Let R = [a, b)× [c, d) be a rectangle in T1 × T2 containing E ∪ ∂∆E. Then it

is not difficult to see that for every P ∈ P(R) we have

J∗(∂∆E,P ) = J∗(E,P )− J∗(E,P ).
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Therefore J∗(∂∆E,P ) ≥ J∗(E) − J∗(E) and hence J∗(∂∆E) ≥ J∗(E) − J∗(E). To

obtain the reverse inequality, let ε > 0 be given and choose H,Q ∈ P(R) so that

J∗(E,H) > J∗(E)− ε

2
and J∗(E,Q) < J∗(E) +

ε

2
.

Let P = H+Q so that P is a refinement of both H and Q (for the definition of H+Q

see Definition 2.3). Since refinement increases the inner sums J∗ and decreases the

outer sums J∗, we find

J∗(∂∆E) ≤ J∗(∂∆E,P ) = J∗(E,P )− J∗(E,P )

≤ J∗(E,Q)− J∗(E,H) < J∗(E)− J∗(E) + ε.

Since ε > 0 is arbitrary, we conclude that J∗(∂∆E) ≤ J∗(E) − J∗(E). Therefore

J∗(∂∆E) = J∗(E)− J∗(E) and the theorem is proved.

Note that every rectangle R = [a, b)× [c, d) ⊂ T1×T2, where a, b ∈ T1, a < b and

c, d ∈ T2, c < d, is Jordan ∆-measurable with Jordan ∆-measure J(R) = (b−a)(d−c).
Indeed, it is easily seen that the ∆-boundary of R is empty (see Example 4.4 (i)),

and therefore it has Jordan ∆-measure zero.

Also note that, for an arbitrary set E ⊂ T0
1×T0

2, a boundary point of E may have

nonzero Jordan ∆-measure whereas ∆-boundary points of E (being ∆-dense points)

have always Jordan ∆-measure zero. In fact, in Example 4.4 (iv), the point (1, 1) is

a boundary point of E, and the Jordan ∆-measure of that point is equal to 1.

The following lemma can be checked directly by using Definition 4.2.

Lemma 4.11. For arbitrary sets E1, E2 ⊂ T1 × T2, we have the following relations:

(i) ∂∆(E1 ∪ E2) ⊂ ∂∆E1 ∪ ∂∆E2;

(ii) ∂∆(E1 ∩ E2) ⊂ ∂∆E1 ∪ ∂∆E2;

(iii) ∂∆(E1 \ E2) ⊂ ∂∆E1 ∪ ∂∆E2.

Hence, in view of Theorem 4.10 and Lemma 4.7, we get the following result.

Lemma 4.12. The union and intersection of a finite number of Jordan ∆-measurable

sets is Jordan ∆-measurable. Also, the difference of two Jordan ∆-measurable sets is

Jordan ∆-measurable.

Now we want to define and compute double ∆-integrals over Jordan ∆-measurable

sets.

Definition 4.13. Let f be defined and bounded on a bounded Jordan ∆-measurable

set E ⊂ T0
1 × T0

2. Let R = [a, b) × [c, d) ⊂ T1 × T2 be a rectangle containing E and

put K = [a, b]× [c, d]. Define F on K as follows:

(4.1) F (t, s) =

f(t, s) if (t, s) ∈ E

0 if (t, s) ∈ K \ E.
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Then f is said to be Riemann ∆-integrable over E if F is Riemann ∆-integrable over

R in the sense of Section 2, and we write∫ ∫
E

f(t, s)∆1t∆2s =

∫ ∫
R

F (t, s)∆1t∆2s.

Remark 4.14. Considering Riemann ∆-sums which approximate
∫ ∫

R
F (t, s)∆1t∆2s,

it is easy to see that the integral
∫ ∫

E
f(t, s)∆1t∆2s does not depend on the choice of

the rectangle R used to enclose E.

Let us also give another definition of the Riemann double ∆-integral over arbi-

trary bounded Jordan ∆-measurable sets. Let the function f be defined and bounded

on a bounded Jordan ∆-measurable set E ⊂ T0
1×T0

2. Let R = [a, b)× [c, d) ⊂ T1×T2

be a rectangle such that E ⊂ R. To define the double ∆-integral of f over E, we

begin with a ∆-partition P ∈ P(R) of type (2.1), (2.2). Some of the subrectangles of

P will lie entirely within E, some will be outside of E, and some will lie partly within

and partly outside E. We consider the collection P ′ = {R1, R2, . . . , Rk} of all those

subrectangles in P that lie completely within the set E. This collection P ′ is called

the inner ∆-partition of the set E, determined by the partition P of the rectangle R.

Using the inner ∆-partition P ′ of the set E, we can proceed in much the same way as

in Section 2. By choosing an arbitrary point (ξi, ηi) in the ith subrectangle Ri of P ′

for i ∈ {1, . . . , k}, we obtain a selection for the inner ∆-partition P ′. Let us denote

by m(Ri) the area of Ri. Then this selection gives the sum

S =
k∑
i=1

f(ξi, ηi)m(Ri).

We call S a Riemann ∆-sum of f corresponding to the partition P ∈ P(R).

Definition 4.15. We say that f is Riemann ∆-integrable over E ⊂ T0
1 × T0

2 if there

exists a number I with the property that for each ε > 0 there exists a number

δ > 0 such that |S − I| < ε for every Riemann ∆-sum S of f corresponding to any

inner ∆-partition P ′ = {R1, R2, . . . , Rk} of E, determined by a partition P ∈ P(R)

independent of the way in which we choose (ξi, ηi) ∈ Ri for 1 ≤ i ≤ k. The number

I is called the Riemann double ∆-integral of f over E, and we write I = limδ→0 S.

Remark 4.16. If E is a rectangle of the form [a, b)× [c, d) ⊂ T1×T2 and we choose

R = E (so that an inner ∆-partition of E is simply a ∆-partition of R), then the

preceding definition reduces to our earlier definition (Definition 2.13) of a double

∆-integral over a rectangle.

Now we want to prove the equivalence of Definition 4.13 and Definition 4.15. To

this end, we first prove two auxiliary results.
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Lemma 4.17. Let E ⊂ T0
1×T0

2 be a bounded set and let ∂∆E denote its ∆-boundary.

Let R = [a, b)× [c, d) ⊂ T1×T2 be a rectangle that contains E∪∂∆E. Next, for every

P ∈ Pδ(R), let J∗(E,P ) and J∗(E,P ) be defined as in Definition 4.5. Then

lim
δ→0

J∗(E,P ) = J∗(E) and lim
δ→0

J∗(E,P ) = J∗(E).

Proof. Define the functions g1 : R→ R and g2 : R→ R by

g1(t, s) =

1 if (t, s) ∈ E

0 if (t, s) ∈ R \ E
and g2(t, s) =

1 if (t, s) ∈ E ∪ ∂∆E

0 if (t, s) ∈ R \ (E ∪ ∂∆E).

Then it is easily seen that

J∗(E,P ) = L(g1, P ), J∗(E) = L(g1), J∗(E,P ) = U(g2, P ), J∗(E) = U(g2).

On the other hand, by Theorem 2.12 we have

lim
δ→0

L(g1, P ) = L(g1) and lim
δ→0

U(g2, P ) = U(g2).

This completes the proof.

Lemma 4.18. Let Γ ⊂ T0
1 × T0

2 be a set of Jordan ∆-measure zero. Moreover, let

R = [a, b)× [c, d) ⊂ T1×T2 be a rectangle in T1×T2 that contains Γ. Then for each

ε > 0 there exists δ > 0 such that for every partition P ∈ Pδ(R) the sum of areas of

subrectangles of P which have a common point with Γ is less than ε.

Proof. It is sufficient to apply Lemma 4.17 to the set E = Γ and take into account

that the assumption implies J∗(Γ) = 0.

Theorem 4.19. Let E ⊂ T0
1 × T0

2 be a bounded and Jordan ∆-measurable set and

let f be a bounded function on E. Then Definition 4.13 and Definition 4.15 of the

Riemann ∆-integrability of f over E are equivalent to each other.

Proof. Suppose R = [a, b) × [c, d) ⊂ T1 × T2 contains E and let K = [a, b] × [c, d].

Define F on K by the formula (4.1). Let P be a ∆-partition of R into subrectangles

Rij (1 ≤ i ≤ n, 1 ≤ j ≤ k) defined by (2.1), (2.2). For every selection (ξij, ηij) ∈ Rij

we have

(4.2)
n∑
i=1

k∑
j=1

F (ξij, ηij)m(Rij) =
∑

(i,j)∈A

f(ξij, ηij)m(Rij) +
∑

(i,j)∈B

F (ξij, ηij)m(Rij),

where

(4.3) A = {(i, j) : Rij ⊂ E} and B = {(i, j) : Rij 6⊂ E and Rij ∩ ∂∆E 6= ∅} .

Now the statement of the theorem follows from (4.2) because, by Lemma 4.18, the

second sum on the right-hand side can be made sufficiently small for P ∈ Pδ(R) as

δ → 0, since ∂∆E has Jordan ∆-measure zero.
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Theorem 4.20. Let E ⊂ T0
1 × T0

2 be a bounded and Jordan ∆-measurable set. Then

the integral
∫ ∫

E
1∆1t∆2s exists and we have

J(E) =

∫ ∫
E

1∆1t∆2s.

Proof. Suppose R = [a, b)× [c, d) ⊂ T1×T2 contains E and let K = [a, b]× [c, d]. Set

F (t, s) =

1 if (t, s) ∈ E

0 if (t, s) ∈ K \ E.

Further, let P be a ∆-partition of R into subrectangles defined by (2.1), (2.2), and

let A and B be defined as in (4.3). If (i, j) ∈ A, then we have F (ξij, ηij) = 1, and so

(4.2) with f = 1 becomes

(4.4)
n∑
i=1

k∑
j=1

F (ξij, ηij)m(Rij) = J∗(E,P ) +
∑

(i,j)∈B

F (ξij, ηij)m(Rij).

Now if P ∈ Pδ(R) and δ → 0, then by Lemma 4.17 and the Jordan ∆-measurability

of E, the first term on the right-hand side of (4.4) tends to J(E) while the second

term tends to zero by Lemma 4.18 since ∂∆E has Jordan ∆-measure zero. Therefore

it follows from (4.4) that 1 is integrable over E and
∫ ∫

E
1∆1t∆2s = J(E).

Example 4.21. Let T1 = T2 = Z and consider any bounded set E ⊂ T1×T2 = Z×Z.

Then ∂∆E = ∅ and therefore E is Jordan ∆-measurable. For any function f : E → R

we have (see Definition 4.13 and Theorem 2.17 (ii))∫ ∫
E

f(t, s)∆1t∆2s =
∑

(t,s)∈E

f(t, s).

The Jordan ∆-measure of E coincides with the number of points of E.

Theorem 4.22 (Additivity). Let E1, E2 ⊂ T0
1×T0

2 be bounded Jordan ∆-measurable

sets such that J(E1 ∩E2) = 0, and let E = E1 ∪E2. Assume f : E → R is a bounded

function which is ∆-integrable over each of E1 and E2. Then f is ∆-integrable over

E, and we have

(4.5)

∫ ∫
E

f(t, s)∆1t∆2s =

∫ ∫
E1

f(t, s)∆1t∆2s+

∫ ∫
E2

f(t, s)∆1t∆2s.

Proof. Suppose R = [a, b) × [c, d) ⊂ T1 × T2 contains E and let K = [a, b] × [c, d].

Define F as in (4.1). Let P = {R1, R2, . . . , Rk} be a ∆-partition of R and form a

Riemann ∆-sum

S(F, P ) =
k∑
i=1

F (ξi, ηi)m(Ri).

If S1 denotes the part of the sum arising from those subrectangles containing only

points of E1, and if S2 is similarly defined by E2, then we can write

S(F, P ) = S1 + S2 + S3,
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where S3 contains those terms coming from subrectangles which contain points of

E1 ∩ E2. Then |S3| can be made arbitrarily small when P is sufficiently fine, S1 ap-

proximates the integral
∫ ∫

E1
f(t, s)∆1t∆2s, and S2 approximates

∫ ∫
E2
f(t, s)∆1t∆2s.

The equation (4.5) is an easy consequence of these remarks.

Remark 4.23. It can be shown that the converse of Theorem 4.22 is also true: ∆-

integrability of f over E implies ∆-integrability of f over each of E1 and E2, and the

equation (4.5) holds.

The following properties of the Riemann ∆-integral over a Jordan ∆-measurable

set, given in Theorems 4.24 – 4.28, follow by using Definition 4.13 and Theorems 3.4,

3.7 – 3.9. We assume E is an arbitrary bounded Jordan ∆-measurable set in T0
1×T0

2,

and the considered functions are assumed to be bounded.

Theorem 4.24 (Linearity). Let f and g be ∆-integrable over E, and let α, β ∈ R.

Then αf + βg is also ∆-integrable over E and∫ ∫
E

[αf(t, s) + βg(t, s)] ∆1t∆2s = α

∫ ∫
E

f(t, s)∆1t∆2s+ β

∫ ∫
E

g(t, s)∆1t∆2s.

Theorem 4.25. If f and g are ∆-integrable over E, then so is their product fg.

Theorem 4.26. If f and g are ∆-integrable over E satisfying f(t, s) ≤ g(t, s) for all

(t, s) ∈ E, then ∫ ∫
E

f(t, s)∆1t∆2s ≤
∫ ∫

E

g(t, s)∆1t∆2s.

Theorem 4.27. If f is ∆-integrable over E, then so is |f | and∣∣∣∣∫ ∫
E

f(t, s)∆1t∆2s

∣∣∣∣ ≤ ∫ ∫
E

|f(t, s)|∆1t∆2s.

Theorem 4.28 (Mean Value Theorem). Let f and g be ∆-integrable over E, and let

g be nonnegative (or nonpositive) on E. Let us set

m = inf {f(t, s) : (t, s) ∈ E} and M = sup {f(t, s) : (t, s) ∈ E} .

Then there exists a real number Λ ∈ [m,M ] such that∫ ∫
E

f(t, s)g(t, s)∆1t∆2s = Λ

∫ ∫
E

g(t, s)∆1t∆2s.

For sets E ⊂ T1 × T2 whose structure is relatively simple, Theorem 3.10 can be

used to obtain formulas for evaluating double integrals by iterated integration. In

order to present one of such formulas, we first give the following lemma.

Lemma 4.29. Let [a, b] ⊂ T0
1 and ϕ : [a, b]→ T

0
2 be a continuous function. Let Γ be

the set (graph of ϕ) in T1 × T2 given by

Γ = {(t, ϕ(t)) : t ∈ [a, b)} .
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Then the subset Γ′ of Γ consisting of all ∆-dense points of Γ has Jordan ∆-measure

zero in T1 × T2.

Proof. Since ϕ is continous on the compact interval [a, b], it is uniformly continuous

on [a, b]. Therefore, for each ε > 0, there exists δ > 0 such that

t, t′ ∈ [a, b] and |t− t′| < δ imply |ϕ(t)− ϕ(t′)| < ε

b− a
.

Take a partition P ∈ Pδ([a, b)) determined by a = t0 < t1 < . . . < tk = b. For each

i ∈ {1, . . . , k}, let us set

di = min {ϕ(t) : t ∈ [ti−1, ti]} and Di = max {ϕ(t) : t ∈ [ti−1, ti]} .

Denote

I = {i ∈ {1, . . . , k} : ti − ti−1 ≤ δ} and I ′ = {i ∈ {1, . . . , k} : ti − ti−1 > δ} .

Consider rectangles Ri ⊂ T1 × T2 (i = 1, . . . , k) defined by Ri = [ti−1, ti) × [di, Di).

Obviously, all ∆-dense points of Γ may lie only in rectangles Ri for i ∈ I. On the

other hand,∑
i∈I

m(Ri) =
∑
i∈I

(ti − ti−1)(Di − di) ≤
ε

b− a
∑
i∈I

(ti − ti−1) ≤ ε

b− a
(b− a) = ε.

Since ε > 0 is arbitrary, this completes the proof.

Theorem 4.30. Let [a, b] ⊂ T0
1 and let ϕ : [a, b] → T

0
2 and ψ : [a, b] → T

0
2 be two

continuous functions such that ϕ(t) < ψ(t) for all t ∈ [a, b]. Let E be the bounded set

in T1 × T2 given by

E = {(t, s) ∈ T1 × T2 : a ≤ t < b, ϕ(t) ≤ s < ψ(t)} .

Then E is Jordan ∆-measurable, and if f : E → R is ∆-integrable over E and if the

single integral ∫ ψ(t)

ϕ(t)

f(t, s)∆2s

exists for each t ∈ [a, b), then the iterated integral∫ b

a

∆1t

∫ ψ(t)

ϕ(t)

f(t, s)∆2s

exists and we have ∫ ∫
E

f(t, s)∆1t∆2s =

∫ b

a

∆1t

∫ ψ(t)

ϕ(t)

f(t, s)∆2s.

Proof. It follows by using Lemma 4.29 that J(∂∆E) = 0 and hence E is Jordan ∆-

measurable. Choose an interval [c, d] ⊂ T0
2 such that the rectangle R = [a, b)× [c, d)
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contains E. Define the function F as in (4.1). For the function F , all conditions of

Theorem 3.10 are satisfied because∫ d

c

F (t, s)∆2s =

∫ ϕ(t)

c

F (t, s)∆2s+

∫ ψ(t)

ϕ(t)

F (t, s)∆2s+

∫ d

ψ(t)

F (t, s)∆2s

=

∫ ψ(t)

ϕ(t)

f(t, s)∆2s.

Therefore we have∫ ∫
R

F (t, s)∆1t∆2s =

∫ b

a

∆1t

∫ d

c

F (t, s)∆2s =

∫ b

a

∆1t

∫ ψ(t)

ϕ(t)

f(t, s)∆2s.

On the other hand, by Definition 4.13,∫ ∫
E

f(t, s)∆1t∆2s =

∫ ∫
R

F (t, s)∆1t∆2s

so that the theorem is proved.
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