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Abstract. In this paper, some sufficient conditions for the oscillation of all solutions of a second-
order nonlinear neutral differential equation with superlinear neutral term are obtained. By means of
an inequality technique and an integral averaging method, some new oscillation criteria are presented
which extend and complement those reported in the literature.

1 Introduction

Since neutral differential equations have wide applications in the fields of science, engineering, and
technology, oscillation theory of such equations has attracted very great interest of mathematicians,
and it has been studied extensively during the past few decades, see for example [1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28] and the references cited therein.

From the review of literature, one can see that many results are available on the oscillation of
second-order differential equations with linear neutral term, and very few results are available when
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the neutral term is nonlinear, see [1, 6, 7, 19, 22, 24, 25]. However, from the above references, one
can see that all oscillation theorems are for second-order differential equations with sublinear neutral
term, and to the best of our knowledge, no oscillation results are available for second-order differential
equations with superlinear neutral term. Motivated by this observation, in this paper, we are concerned
with the oscillatory behavior of the second-order neutral differential equation

(a(x+ p(xα ◦ τ))′)′(t)+q(t) f (x(σ(t))) = 0, t ≥ t0 > 0, (1.1)

subject to the following conditions:

(H1) a ∈ C1([t0,∞),(0,∞)), p,q ∈ C([t0,∞), [0,∞)), q is not eventually zero on [t∗,∞) for t∗ ≥ t0, and
p(t)→ ∞ as t→ ∞;

(H2) f ∈ C(R,R) and there exists M > 0 such that f (u)/uβ ≥M for all u 6= 0;
(H3) α≥ 1 and β ∈ (0,∞) are ratios of odd positive integers.
(H4) τ,σ ∈ C1([t0,∞),R), τ(t)≤ t, σ(t)≤ t, τ′(t)> 0, and

lim
t→∞

τ(t) = lim
t→∞

σ(t) = ∞.

By a solution of (1.1), we mean x ∈ C([Tx,∞),R), Tx ≥ t0, with a(x+ p(xα ◦ τ))′ ∈ C1([Tx,∞),R)
and such that (1.1) is satisfied on [Tx,∞). We consider only these solutions x of (1.1) which satisfy
sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx, and we assume that (1.1) possesses such solutions. As usual,
a solution of (1.1) is called oscillatory if it has zeros on [T,∞) for all T ≥ Tx; otherwise it is called
nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

In [1, 7, 22, 24, 25], the authors considered (1.1) with 0 < α ≤ 1 and f (u) = uβ, β ∈ (0,∞), and
they established conditions for oscillation of all solutions in the cases∫

∞

t0

dt
a(t)

= ∞ (1.2)

or ∫
∞

t0

dt
a(t)

< ∞. (1.3)

Therefore, in this paper, we obtain conditions for oscillation of (1.1) under the conditions (1.2) or
(1.3) and α ≥ 1. Hence, the results presented here generalize and complement some of the results
reported in [1, 6, 7, 19, 22, 24, 25].

2 Oscillation Results

In this section, we obtain sufficient conditions for oscillation of all solutions of (1.1). Due to the form
of our equation, we only need to give proofs for the case of positive nonoscillatory solutions since the
proofs for negative solutions are similar. For any T ≥ t0 and for any real-valued positive function µ
which is decreasing and tending to zero as t→ ∞, we denote

z(t) = x(t)+ p(t)xα(τ(t)), R(t) =
∫ t

T

ds
a(s)

, A(t) =
∫

∞

t

ds
a(s)

,

Q1(t) =
1− 1

αp
1
α (τ−1(τ−1(t)))

(
R(τ−1(τ−1(t)))

R(τ−1(t)) + α−1
µ(τ−1(t))

)
p(τ−1(t))

> 0,

Q2(t) =
1− 1

αp
1
α (τ−1(τ−1(t)))

(
1+ α−1

A2(τ−1(t))

)
p(τ−1(t))

> 0
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for all t ≥ T , where τ−1 is the inverse function of τ. Note that the last two conditions imply that
p(t)→ ∞ as t→ ∞.

We begin with the following auxiliary result, which can be found in [12, Theorem 41, p. 39].

Lemma 2.1. If a > 0 and 0 < γ≤ 1, then

aγ ≤ γa+(1− γ). (2.1)

Lemma 2.2. Assume (1.2). If x is a positive solution of (1.1), then the corresponding z satisfies

z > 0, z′ > 0, and (az′)′ ≤ 0 (2.2)

eventually.

Proof. The proof is similar to that of [28, Lemma 1], and hence the details are omitted.

Lemma 2.3. Let x be a positive solution of (1.1) such that the corresponding z satisfies (2.2). If there
exists a positive function µ which is decreasing and tending zero, then

xα(t)≥ Q1(t)z(τ−1(t)), t ≥ T. (2.3)

Proof. From (H1) and the definition of z, we have z(t) ≥ x(t) for all t ≥ t1 ≥ t0. Again from the
definition of z, we have

xα(t) =
1

p(τ−1(t))
(z(τ−1(t))− x(τ−1(t)))

≥ 1
p(τ−1(t))

(
z(τ−1(t))− z1/α(τ−1(τ−1(t)))

p1/α(τ−1(τ−1))

)
.

Since 1
α
≤ 1, using Lemma 2.1 in the last inequality, we obtain

xα(t)≥
z(τ−1(t))− 1

p1/α(τ−1(τ−1(t)))

( 1
α

z(τ−1(τ−1(t)))+ α−1
α

)
p(τ−1(t))

. (2.4)

From (2.2), we have

z(t) = z(t1)+
∫ t

t1

a(s)z′(s)
a(s)

ds≥ R(t)a(t)z′(t), (2.5)

and we deduce from (2.5) that for all t ≥ t1, we have( z
R

)′
(t)≤ 0. (2.6)

Using (2.6) and the condition τ−1(t)≤ τ−1(τ−1(t)), we conclude

xα(t)≥
z(τ−1(t))− 1

αp1/α(τ−1(τ−1(t)))

(
R(τ−1(τ−1(t)))

R(τ−1(t)) z(τ−1(t))+α−1
)

p(τ−1(t))
. (2.7)

Since z is increasing and µ is decreasing and tending to zero, there exists T ≥ t1 such that z(t)≥ µ(t)
for all t ≥ T . Substituting this in (2.7) and rearranging, we obtain (2.3). This completes the proof.
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Lemma 2.4. Assume (1.3). If x is a positive solution of (1.1), then the corresponding z satisfies even-
tually one of the following two cases:

(1) z > 0, z′ > 0, (az′)′ ≤ 0;
(2) z > 0, z′ < 0, (az′)′ ≤ 0.

Proof. The proof is similar to that of [25, Lemma 2.1], and hence the details are omitted.

Lemma 2.5. Let x be a positive solution of (1.1) and suppose z satisfies Case (2) of Lemma 2.4. Then
there exists T ≥ t0 such that

xα(t)≥ Q2(t)z(τ−1(t)), t ≥ T. (2.8)

Proof. From (H1) and the definition of z, we have z(t)≥ x(t) for all t ≥ T ≥ t0. Further, for s≥ t, we
have

z′(s)≤ a(t)z′(t)
a(s)

,

and integrating this inequality from t to `, we find

z(`)≤ z(t)+a(t)z′(t)
∫ `

t

ds
a(s)

.

Letting `→ ∞, we get
0≤ z(t)+A(t)a(t)z′(t),

and we deduce from the last inequality( z
A

)′
(t)≥ 0, t ≥ T. (2.9)

Since τ−1(t)≤ τ−1(τ−1(t)) and z is decreasing, we have from (2.4) that

xα(t)≥
z(τ−1(t))− 1

αp1/α(τ−1(τ−1(t)))

(
z(τ−1(t))+α−1

)
p(τ−1(t))

(2.10)

holds. From (2.9), it follows that z(t)
A(t) is increasing and A(t) is decreasing and tending to zero, thus

z(t)
A(t) ≥ A(t) for all t ≥ T . Substituting this in (2.10) and rearranging, we get (2.8). This completes the
proof.

Here is our first oscillation result.

Theorem 2.1. Assume (1.2) and β≥ α. If σ(t)≤ τ(t) for all t ≥ T and there exists a positive, nonde-
creasing and differentiable function ρ such that

limsup
t→∞

∫ t

T

[
ρ(s)q(s)Q

β

α

1 (σ(s))
R

β

α (τ−1(σ(s)))

R
β

α (s)
− a(s)(ρ′(s))2

4M2ρ(s)

]
ds = ∞ (2.11)

for every constant M2 > 0, then every solution of (1.1) is oscillatory.
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Proof. Let x be an eventually positive solution of (1.1), such that x(τ(t))> 0 and x(σ(t))> 0 for all
t ≥ T ≥ t0, where T is chosen so that (2.2) holds for t ≥ T . From (1.1) and (2.3), we get

(az′)′(t)+Mq(t)Q
β

α

1 (σ(t))z
β

α (τ−1(σ(t)))≤ 0, t ≥ T. (2.12)

Since τ−1(σ(t))≤ t and z(t)
R(t) is decreasing, we have

z(τ−1(σ(t)))
R(τ−1(σ(t)))

≥ z(t)
R(t)

, t ≥ T. (2.13)

Using (2.13) in (2.12) yields

(az′)′(t)+Mq(t)Q
β

α

1 (σ(t))
R

β

α (τ−1(σ(t)))

R
β

α (t)
z

β

α (t)≤ 0, t ≥ T. (2.14)

Set

w(t) = ρ(t)
a(t)z′(t)

z(t)
, t ≥ T. (2.15)

Then w(t)> 0 for t ≥ T , and using (2.14), we have

w′(t) ≤ ρ(t)
(az′)′(t)

z(t)
+

ρ′(t)
ρ(t)

w(t)− w2(t)
a(t)ρ(t)

≤ −MK
β

α
−1

ρ(t)q(t)Q
β

α

1 (σ(t))
R

β

α (τ−1(σ(t)))

R
β

α (t)
+

a(t)(ρ′(t))2

4ρ(t)
,

where we have used z(t)≥ K > 0 and β≥ α for t ≥ T . Integrating the last inequality from T to t, we
obtain ∫ t

T

[
ρ(s)q(s)Q

β

α

1 (σ(s))
R

β

α (τ−1(σ(s)))

R
β

α (s)
− a(s)(ρ′(s))2

4M2ρ(s)

]
ds≤ w(T ),

where M2 = MK
β

α
−1. Letting t→ ∞ in the last inequality, we obtain a contradiction with (2.11). This

completes the proof.

Theorem 2.2. Assume (1.2) and β≤ α. If σ(t)≤ τ(t) for all t ≥ T and there exists a positive, nonde-
creasing and differentiable function ρ such that

limsup
t→∞

∫ t

T

[
ρ(s)q(s)Q

β

α

1 (σ(s))
R

β

α (τ−1(σ(s)))
R(s)

− a(s)(ρ′(s))2

4M3ρ(s)

]
ds = ∞ (2.16)

for every constant M3 > 0, then every solution of (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.1, we have (2.12). Since z(t)
R(t) is decreasing and β < α,

there exists K1 > 0 such that
z

β

α
−1(t)

R
β

α
−1(t)

≥ 1

K
1− β

α

1

, t ≥ T.

Using this in (2.12), we obtain
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(az′)′(t)+M3q(t)Q
β

α

1 (σ(t))
R

β

α (τ−1(σ(t)))
R(t)

z(t)≤ 0, t ≥ T,

where M3 =
M

K
1− β

α
1

. The rest of the proof is similar to that of Theorem 2.1, and the details are omitted.

This completes the proof.

Our next theorems are for the case when (1.3) holds.

Theorem 2.3. Assume (1.3). If ∫
∞

T
q(t)Q

β

α

1 (σ(t))dt = ∞ (2.17)

and ∫
∞

T

1
a(t)

(∫ t

T
q(s)Q

β

α

2 (σ(s))A
β

α (τ−1(σ(s)))ds
)

dt = ∞, (2.18)

then every solution of (1.1) is oscillatory.

Proof. Let x be an eventually positive solution of (1.1) such that x(τ(t)) > 0 and x(σ(t)) > 0 for all
t ≥ T ≥ t0, where T is chosen so that the cases of Lemma 2.4 hold for all t ≥ T . We shall show
that in each case we are led to a contradiction. Case (1). From (1.1) and (2.3), we obtain (2.12), and
integrating this from T to t and using the fact that z(t) is increasing, we have∫ t

T
q(s)Q

β

α

1 (σ(s))ds < ∞.

Letting t → ∞ in the last inequality, we obtain a contradiction with (2.17). Case (2). From (1.1) and
(2.9), we have

(az′)′(t)+Mq(t)Q
β

α

2 (σ(t))z
β

α (τ−1(σ(t)))≤ 0, t ≥ T.

Integrating the last inequality from T to t, we obtain

M
∫ t

T
q(s)Q

β

α

2 (σ(s))z
β

α (τ−1(σ(s)))ds≤−a(t)z′(t),

and hence
MK

β

α

2
a(t)

∫ t

T
q(s)Q

β

α

2 (σ(s))A
β

α (τ−1(σ(s)))ds≤−z′(t), (2.19)

where we have used that z(t)
A(t) is increasing and z(t)

A(t) ≥ K2 > 0 for all t ≥ T . Integrating (2.19) from T
to t and then letting t→ ∞, we obtain a contradiction with (2.18). This completes the proof.

Theorem 2.4. Assume (1.3) and (2.18). If σ(t)< τ(t) and the first-order delay differential inequality

w′(t)+Mq(t)Q
β

α

1 (σ(t))R
β

α (τ−1(σ(t)))w
β

α (τ−1(σ(t)))≤ 0, t ≥ T (2.20)

has no positive solution, then every solution of (1.1) is oscillatory.
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Proof. Proceeding as in the proof of Theorem 2.3, we see that one of the two cases of Lemma 2.4
holds. Case (1). Proceeding as in the proof of Theorem 2.1, we have (2.12). Now using (2.5), it follows
from (2.12) that

(az′)′(t)+Mq(t)Q
β

α

1 (σ(t))R
β

α (τ−1(σ(t)))w
β

α (τ−1(σ(t)))≤ 0, t ≥ T

holds. Let w(t) = a(t)z′(t)> 0 for t ≥ T . Then w is a positive solution of the inequality (2.20), which
is a contradiction. The proof of Case (2) is similar to that of Case (2) of Theorem 2.3. This completes
the proof.

Corollary 2.1. Assume (1.3), α = β, and σ(t)< τ(t). If

liminf
t→∞

∫ t

τ−1(σ(t))
q(s)Q1(σ(s))R(τ−1(σ(s)))ds >

1
eM

(2.21)

and ∫
∞

T

1
a(t)

(∫ s

T
q(s)Q3(σ(s))A(τ−1(σ(s)))ds

)
dt = ∞, (2.22)

then every solution of (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.3, we see that one of the two cases of Lemma 2.4
holds. Case (1). By (2.21) and [6, Theorem 2.1.1], (2.20) has no positive solution, which is a con-
tradiction. The proof of Case (2) is the same as that of Case (2) of Theorem 2.3 with α = β. This
completes the proof.

Corollary 2.2. Assume (1.3), α > β, and σ(t)< τ(t). If (2.18) holds and∫
∞

T
q(t)Q

β

α

1 (σ(t))R
β

α (τ−1(σ(t)))dt = ∞, (2.23)

then every solution of (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.3, we see that one of the two cases of Lemma 2.4
holds. Case (1). By (2.23) and [6, Theorem 3.9.3], (2.20) has no positive solution, which is a con-
tradiction. The proof of Case (2) is similar to that of Case (2) of Theorem 2.3. This completes the
proof.

In the following corollary, we assume σ(t) = t−k and τ(t) = t−m, where k >m> 0 are constants.

Corollary 2.3. Assume (1.3), α < β, and k > m. If (2.18) holds and

liminf
t→∞

[(
β

α

)− t
k−m

log
(

q(t)Q
β

α (t− k)R
β

α (t− k+m)
)]

> 0, (2.24)

then every solution of (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.4, we see that one of the two cases of Lemma 2.4
holds. Case (1). By [20, Lemma 2.2], the inequality (2.20) and the equation

w′(t)+Mq(t)Q
β

α

1 (t− k)R
β

α (t− k+m)w
β

α (t− k+m) = 0, t ≥ T (2.25)

has a positive solution. But by (2.24) and [20, Corollary 1.2], (2.25) has no positive solution, which
is a contradiction. The proof of Case (2) is similar to that of Case (2) of Theorem 2.3. This completes
the proof.
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3 Examples

In this section, we present two examples to illustrate the main results.

Example 3.1. Consider the second-order neutral differential equation

d
dt

(
t

d
dt

(
x(t)+

t3

8
x3
( t

2

)))
+λt2x3

( t
3

)
= 0, t ≥ 1, (3.1)

where λ > 0 is a constant. Here,

M = 1, α = β = 3, a(t) = t, p(t) =
t3

8
,

q(t) = λt2, τ(t) =
t
2
, σ(t) =

t
3
.

A simple calculation shows that R(t) = log t, and by taking µ(t) = 1
4t , we see that

Q1(t) =
1
t3

[
1− 1

6t

(
log4t
log2t

+ t
)]

> 0, t ≥ 1.

By taking ρ(t) = 1, we see that (2.11) is satisfied for all λ > 0. Hence by Theorem 2.1, every solution
of (3.1) is oscillatory provided λ > 0.

Example 3.2. Consider the second-order neutral differential equation

d
dt

(
t2 d

dt

(
x(t)+ etx3

( t
2

)))
+ etx

( t
3

)
= 0, t ≥ 1. (3.2)

Here,

M = 1, α = 3, β = 1, a(t) = t2, p(t) = et ,

q(t) = et , τ(t) =
t
2
, σ(t) =

t
3
.

Then

R(t) =
t−1

t
, A(t) =

1
t
,

Q1(t) =
1

3e2t

[
3− e−

4
3 t
(

8t2−2t
2t−1

)]
> 0, t ≥ 1,

and

Q2(t) =
1

3e2t

[
3− e−

4
3 t(1+8t2)

]
> 0, t ≥ 1.

Now one can easily see that (2.17) and (2.18) are satisfied, and hence by Theorem 2.3, every solution
of (3.2) is oscillatory.
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[4] Blanka Baculı́ková and Jozef Džurina. Oscillation theorems for second order neutral differential equations. Comput.
Math. Appl., 61(1):94–99, 2011.
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