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OSCILLATION OF SECOND ORDER DELAY

DYNAMIC EQUATIONS

R. P. AGARWAL, M. BOHNER AND S. H. SAKER

ABSTRACT. In this paper we establish some sufficient con-
ditions for oscillation of second order delay dynamic equations
on time scales. Our results not only unify the oscillation of sec-
ond order delay differential and difference equations but also
are new for q-difference equations and can be applied on any
time scale. We illustrate our results with many examples.

1 Introduction The theory of time scales, which has recently re-
ceived a lot of attention, was introduced by Stefan Hilger in his PhD
thesis [19] in order to unify continuous and discrete analysis. Not only
can this theory of so-called dynamic equations unify the theories of dif-
ferential equations and difference equations, but also it is able to extend

these classical cases to cases “in between”, e.g., to so-called q-difference
equations. A time scale T is an arbitrary closed subset of the reals, and
the cases when this time scale is equal to the reals or to the integers rep-
resent the classical theories of differential and of difference equations.
Many other interesting time scales exist, and they give rise to plenty
of applications, among them the study of population dynamic models
(see [9]). A book on the subject of time scales by Bohner and Peterson
[9] summarizes and organizes much of the time scale calculus (see also
[1, 10]). For the notions used below we refer to [9] and to the next
section, where we recall some of the main tools used in the subsequent
sections of this paper.

The problem of obtaining sufficient conditions to ensure that all solu-
tions of certain classes of second order dynamic equations are oscillatory
has been studied by a number of authors [2, 3, 4, 5, 7, 11, 12, 13, 14,

15, 16, 21]. A large portion of these results has been for the nonlinear
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dynamic equation of the form

(1.1) (αx∆)∆(t) + p(t)f(x(σ(t))) = 0 for t ∈ T,

where p(t) ≥ 0.
Recently Bohner [6] (see also Zhang and Deng [22]) considered the

linear delay dynamic inequality

(1.2) y∆(t) + p(t)y(τ(t)) ≤ 0 for t ∈ T

and unified oscillation criteria of delay differential and difference equa-
tions.

In this paper, we consider the second order linear delay dynamic
equation

(1.3) x∆∆(t) + p(t)x(τ(t)) = 0 for t ∈ T

on a time scale, where the function p is rd-continuous such that p(t) > 0
for all t ∈ T, and where τ : T → T such that τ(t) ≤ t for all t ∈ T

is the delay function. We note that, if T = R, then x∆ = x′ (the
usual derivative), and (1.3) becomes the second order delay differential
equation

(1.4) x′′(t) + p(t)x(τ(t)) = 0 for t ∈ R.

If T = Z, then x∆ = ∆x (the forward difference operator), and (1.3)
becomes the second order delay difference equation

(1.5) x(t + 2) − 2x(t + 1) + x(t) + p(t)x(τ(t)) = 0 for t ∈ Z.

If T = hZ := {hk : k ∈ Z} with h > 0, then (1.3) becomes the more
general second order delay difference equation

(1.6) x(t + 2h) − 2x(t + h) + x(t) + h2p(t)x(τ(t)) = 0 for t ∈ hZ.

If T = qN0 :=
{

qk : k ∈ N0

}

with q > 1, then (1.3) becomes the second
order delay q-difference equation

x(q2t) − (q + 1)x(qt) + qx(t)

+ q(q − 1)2t2p(t)x(τ(t)) = 0 for t ∈ qN0 .

(1.7)
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The paper is organized as follows. In Section 2, we present some ba-
sic definitions concerning the calculus on time scales. In Section 3, we
reduce (1.3) to an inequality of the form (1.2) and then apply the results
from [6] to derive sufficient conditions for oscillation of all solutions of
(1.3). Finally, in Section 4 we present further oscillation criteria, among
them some that we derive by the Riccati transformation technique. We
illustrate the presented theory with many examples. Our results not only
unify oscillation criteria for (1.4) and (1.5) but also are new for equa-
tions (1.6) and (1.7), and corresponding equations on arbitrary other
time scales. Some of the arguments in the first part of the paper are
similar to techniques for delay differential equations which appear in the
monographs [17, 18, 20].

2 Some preliminaries on time scales A time scale T is an arbi-
trary nonempty closed subset of the real numbers R. As we are interested
in oscillatory behavior, we assume throughout that the given time scale
T is unbounded above, i.e., it is a time scale interval of the form [a,∞)
with a ∈ T. On T we define the forward and backward jump operators
by

σ(t) := inf {s ∈ T : s > t} and ρ(t) := sup {s ∈ T : s < t} .

A point t ∈ T is said to be left-dense if ρ(t) = t, right-dense if σ(t) = t,
left-scattered if ρ(t) < t, and right-scattered if σ(t) > t. The graininess
function µ is defined by

µ(t) := σ(t) − t for all t ∈ T.

A function f : T → R is said to be rd-continuous if it is continuous at
each point and if there exists a finite left limit in all left-dense points.
The (delta) derivative of f at t ∈ T is defined by

f∆(t) = lim
s→t

s∈U(t)

f(σ(t)) − f(s)

σ(t) − s
where U(t) = T \ {σ(t)},

provided that limit exists. The derivative and the shift operator σ are
related by the useful formula

(2.1) fσ = f + µf∆ where fσ := f ◦ σ.
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We will make use of the following product and quotient rules for the
derivative of the product fg and the quotient f/g (where ggσ 6= 0) of
two differentiable function f and g:

(2.2) (fg)∆ = f∆g + fσg∆ and

(

f

g

)∆

=
f∆g − fg∆

ggσ
.

For a, b ∈ T and a differentiable function f , the Cauchy integral of f∆

is defined by

(2.3)

∫ b

a

f∆(t) ∆t = f(b) − f(a).

The integration by parts formula follows from (2.2) and reads

(2.4)

∫ b

a

f(t)g∆(t) ∆t = [f(t)g(t)]ba −
∫ b

a

f∆(t)g(σ(t))∆t,

and infinite integrals are defined as

∫ ∞

a

f(t)∆t = lim
b→∞

∫ b

a

f(t)∆t.

Four examples of time scales together with their derivative operators
are given in Section 1 above. Numerous other examples can be found in
[9, 10].

In Section 3 below we shall also make use of the exponential func-
tion ep(·, t0), which is defined as the unique solution of the initial value
problem

(2.5) x∆ = p(t)x, x(t0) = 1.

It is known [9] that (2.5) has a unique solution provided p is rd-continuous
and regressive (we write p ∈ R), i.e.,

1 + µ(t)p(t) 6= 0 for all t ∈ T.

It is also known [9] that this unique solution of (2.5) is always positive
if p is in addition positively regressive (we write p ∈ R+), i.e.,

1 + µ(t)p(t) > 0 for all t ∈ T.
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Examples of ep(t, s) for t ≥ s on the time scales T = R and T = Z are

exp

(
∫ t

s

p(u)du

)

and
t−1
∏

u=s

(1 + p(u)) ,

respectively.
The following auxiliary result concerning equations of the form (1.3)

will be used throughout this paper.

Lemma 2.1. If x is an eventually positive solution of (1.3), then there

exists t0 ∈ T with

(2.6) x(t) ≥ x(τ(t)) > 0, x∆(t) > 0, and x∆∆(t) < 0

for all t ≥ t0 ≥ a.

Proof. Let x be an eventually positive solution of (1.3). Hence there
exists t1 ∈ T with t1 ≥ a such that x(t) > 0 and x(τ(t)) > 0 for t ≥ t1.
In view of (3.1) we have

(2.7) x∆∆(t) = −p(t)x(τ(t)) < 0 for all t ≥ t1,

and so x∆ is eventually decreasing and hence eventually of one sign.
We first show that x∆ is eventually positive. Indeed, since p is a posi-
tive function, the decreasing function x∆ is either eventually positive or
eventually negative. Suppose there exists t2 ≥ t1 such that x∆(t2) < 0.
Then from (2.7) we have

x(t)
(2.3)
= x(t2) +

∫ t

t2

x∆(s)∆s

(2.7)

≤ x(t2) + (t − t2)x
∆(t2)

→ −∞ as t → ∞,

a contradiction. Hence

x∆(t) ≥ 0 for all t ≥ t1.

Now pick any t0 ∈ T with t0 > t1. Then (2.6) holds.

Another result that we will use frequently is taken from [8] and reads
as follows.
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Lemma 2.2. Let a ∈ T. If T is a time scale that is unbounded above,

then

(2.8)

∫ ∞

a

∆t

t
= ∞.

3 Reduction to first order delay dynamic inequalities In this
section we give some sufficient conditions for oscillation of (1.3) by re-
ducing this equation to a first order delay dynamic inequality of the
form (1.2) and by applying the main result of [6] (see also [22]) to the
resulting first order inequality. We begin by stating the main result from
[6] for easy reference. Throughout this section we assume that

(3.1) p(t) > 0, τ(t) < t for all t ∈ T, and lim
t→∞

τ(t) = ∞.

Theorem 3.1. Assume (3.1). If (1.2) possesses an eventually positive

solution, then

α ≥ 1, where α := lim sup
t→∞

sup
λ>0

−λp∈R+

{λe−λp(t, τ(t))} .

The main result in this section now is a consequence of Theorem 3.1
and reads as follows.

Theorem 3.2. Assume (3.1). If (1.3) possesses an eventually positive

solution, then

α(c) ≥ 1 for all c ∈ (0, 1)

where

α(c) := lim sup
t→∞

sup
λ>0

−λcpτ∈R+

{λe−λcpτ (t, τ(t))} .

Proof. Let x be an eventually positive solution of (1.3). Hence there
exists t0 ∈ T such that (2.6) holds. Define y := x∆. Then

x(t)
(2.3)
= x(t0) +

∫ t

t0

y(s)∆s

(2.6)

≥ x(t0) + (t − t0)y(t)

(2.6)

≥ (t − t0)y(t).
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Let c ∈ (0, 1). Then for t ≥ t0/(1− c) =: t∗ ≥ t0 we have t− t0 ≥ ct and
hence x(t) ≥ cty(t). Thus

(3.2) x(τ(t)) ≥ cτ(t)y(τ(t)) for all t ≥ t∗.

Substituting (3.2) into (1.3) provides for t ≥ t∗

y∆(t) = x∆∆(t) = −p(t)x(τ(t)) ≤ −cp(t)τ(t)y(τ(t)).

Therefore y is an eventually positive solution of

(3.3) y∆(t) + cp(t)τ(t)y(τ(t)) ≤ 0.

Clearly, (3.3) is an inequality of the form (1.2), and therefore the claim
follows by applying Theorem 3.1.

From Theorem 3.2 we have the following corollary.

Corollary 3.3. Assume (3.1). If α(c) < 1 for some c ∈ (0, 1), then all

solutions of (1.3) are oscillatory on [a,∞).

Example 3.4. If T = R, then

f(λ) := λe−λcpτ (t, τ(t)) = λe−λM with M =

∫ t

τ(t)

cp(s)τ(s)ds.

For λ̃ := 1/M > 0 we have f ′(λ̃) = 0 and f ′′(λ̃) < 0. Thus

sup
λ>0

−λcpτ∈R+

f(λ) = f(λ̃) =
λ̃

e
=

1

Me

so that α(c) < 1 iff

(3.4) lim inf
t→∞

∫ t

τ(t)

p(s)τ(s)ds >
1

ce
.

Hence (3.4) for some c ∈ (0, 1) implies that (1.4) is oscillatory.
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Example 3.5. Let T = {tn : n ∈ Z} be a time scale such that σ(tn) =
tn+1. Let k ∈ N and τ(tn) = tn−k. Then

f(λ) := λe−λcpτ (t, τ(t)) ≤ λ(1 − λS)k with S =
1

k

∫ t

τ(t)

cp(s)τ(s)∆s,

where we used the arithmetic-geometric inequality. For

λ̃ :=
1

(k + 1)S
> 0

we have f ′(λ̃) = 0 and f ′′(λ̃) < 0. Thus

sup
λ>0

−λcpτ∈R+

f(λ) ≤ f(λ̃) =
1

(k + 1)S

(

1 − 1

k + 1

)k

=
kk

S(k + 1)k+1

so that α(c) < 1 if

(3.5) lim inf
t→∞

∫ t

τ(t)

p(s)τ(s)∆s >
1

c

(

k

k + 1

)k+1

.

Hence (3.5) for some c ∈ (0, 1) implies that the corresponding equation
(1.3) is oscillatory. Note that all three dynamic equations (1.5)–(1.7)
can be accommodated within this example.

In the following theorem we establish new oscillation criteria for (1.3)
which are different from the above condition and can be verified easily.

Theorem 3.6. Assume (3.1). If

(3.6) lim sup
t→∞

∫ t

τ(t)

p(s)τ(s)∆s >
1

c
for some c ∈ (0, 1),

then every solution of (1.3) is oscillatory on [a,∞).

Proof. Suppose to the contrary that x is a nonoscillatory solution of
(1.3). Without loss of generality, we may assume that x is an even-
tually positive solution of (1.3) (we shall consider only this case, since
the substitution x̃ = −x transforms (1.3) into an equation of the same
form). Hence there exists t0 ∈ T such that (2.6) holds. Proceeding as
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in Theorem 3.2 we get (3.3). Integrating (3.3) from τ(t) to sufficiently
large t provides

0
(3.3)

≥
∫ t

τ(t)

{

y∆(s) + cp(s)τ(s)y(τ(s))
}

∆s

(2.3)
= y(t) − y(τ(t)) +

∫ t

τ(t)

cp(s)τ(s)y(τ(s))∆s

(2.6)

≥ y(t) − y(τ(t)) + y(τ(t))

∫ t

τ(t)

cp(s)τ(s)∆s

= y(t) + y(τ(t))

[

∫ t

τ(t)

cp(s)τ(s)∆s − 1

]

(3.6)
> 0.

This is a contradiction and the proof is complete.

Remark 3.7. Note that Theorems 3.2 and 3.6 are not applicable to
equations of type (1.3) with τ(t) = t. So the delay appearing in (1.3)
plays a crucial rôle in the qualitative behavior. In the following section
we establish some new oscillation criteria for (1.3) which can be applied
even in the case without delay.

4 Riccati transformation technique Throughout this section
we assume

(4.1) p(t) > 0, τ(t) ≤ t for all t ∈ T and lim
t→∞

τ(t) = ∞.

We also assume throughout that

(4.2)

∫ ∞

a

σ(t) p(t)∆t = ∞.

Theorem 4.1. Assume (3.1). If (4.2) holds, then every bounded solu-

tion of (1.3) is oscillatory on [a,∞).

Proof. Suppose that there exists an eventually positive and bounded
solution x. Then there exists t0 ∈ T such that (2.6) holds, and without
loss of generality, there exists α, β ∈ R such that

(4.3) 0 < α < x(τ(t)) < β for all t ≥ t0.
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Let X(t) = tx∆(t). Then

X(t)
(2.3)
= X(t0) +

∫ t

t0

X∆(s)∆s

(2.2)
= X(t0) +

∫ t

t0

{

x∆(s) + σ(s)x∆∆(s)
}

∆s

(1.3)
= X(t0) +

∫ t

t0

{

x∆(s) − σ(s)p(s)x(τ(s))
}

∆s

(2.3)
= X(t0) + x(t) − x(t0) −

∫ t

t0

σ(s)p(s)x(τ(s))∆s

(4.3)

≤ X(t0) + β − x(t0) − α

∫ t

t0

σ(s)p(s)∆s

(4.2)→ −∞ as t → ∞,

i.e., there exists a constant M > 0 such that

x∆(t) ≤ −M/t for t ≥ T

for some T ≥ t0, and this implies by (2.8) that limt→∞ x(t) = −∞,
contradicting x(t) > 0 for all t ≥ t0. Thus every bounded solution is
oscillatory.

The following example is illustrative.

Example 4.2. Consider the Euler delay dynamic equation

(4.4) x∆∆(t) +
1

tσ(t)
x(τ(t)) = 0 for t ≥ a,

where τ satisfies (4.1). From (2.8) we have

∫ t

a

σ(s) p(s)∆s =

∫ t

a

∆s

s
→ ∞ as t → ∞.

By Theorem 3.2, every bounded solution of (4.4) oscillates.

The next theorem improves Theorem 4.1 and gives a condition under
which every solution of (1.3) oscillates. We first need the following
auxiliary result.
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Lemma 4.3. If (4.1) and (4.2) hold, then an eventually positive solu-

tion x of (1.3) satisfies eventually

(4.5) x(t) ≥ tx∆(t) and
x(t)

t
is nonincreasing.

Proof. First note that there exists t0 ∈ T such that (2.6) holds. Let
X(t) = x(t) − tx∆(t). Then

X(t)
(2.3)
= X(t0) +

∫ t

t0

X∆(s)∆s

(2.2)
= X(t0) +

∫ t

t0

{

x∆(s) − σ(s)x∆∆(s) − x∆(s)
}

∆s

(1.3)
= X(t0) +

∫ t

t0

σ(s)p(s)x(τ(s))∆s

(2.6)

≥ X(t0) + x(τ(t0))

∫ t

t0

σ(s)p(s)∆s

(4.2)→ ∞ as t → ∞.

Hence the first part of (4.5) follows, and because of

Y ∆(t)
(2.2)
=

tx∆(t) − x(t)

tσ(t)
where Y (t) =

x(t)

t
,

the second part of (4.5) is true as well.

Theorem 4.4. Assume that (4.1) and (4.2) hold. If

(4.6) lim
t→∞

{

t

∫ ∞

t

p(s)
τ(s)

s
∆s

}

= ∞,

then every solution of (1.3) is oscillatory on [a,∞).

Proof. Suppose to the contrary that x is a nonoscillatory solution of
(1.3). Then there exists t0 ∈ T such that (2.6) holds. From (1.3), (2.3)
and (2.6) we have for T ≥ t ≥ t0

∫ T

t

p(s)x(τ(s))∆s = −
∫ T

t

x∆∆(s)∆s = x∆(t) − x∆(T ) ≤ x∆(t)



12 R. P. AGARWAL, M. BOHNER AND S. H. SAKER

and hence
∫ ∞

t

p(s)x(τ(s))∆s ≤ x∆(t).

This and Lemma 4.3 provides for sufficiently large t ∈ T

x(t) ≥ tx∆(t)

≥ t

∫ ∞

t

p(s)x(τ(s))∆s

(4.5)

≥ t

∫ ∞

t

p(s)
τ(s)

s
x(s)∆s

≥ x(t)

{

t

∫ ∞

t

p(s)
τ(s)

s
∆s

}

so that for sufficiently large t ∈ T

1 ≥ t

∫ ∞

t

p(s)
τ(s)

s
∆s.

This contradicts (4.6) and completes the proof.

Note that from the above results we can derive some oscillation cri-
teria for equations (1.4)–(1.7). For example from Theorems 4.1 and 4.4
we have the following results.

Example 4.5. Let h > 0. Assume that (4.1) holds and

lim
n→∞

n
∑

ν=a/h

(ν + 1)p(νh) = ∞.

Then every bounded solution of (1.6) oscillates on [a,∞). If in addition

lim
n→∞

{

n

∞
∑

ν=n

p(νh)
τ(νh)

ν

}

= ∞,

then every solution of (1.6) is oscillatory on [a,∞).

Example 4.6. Let q > 1. Assume that (4.1) holds and

lim
n→∞

n
∑

ν=logq a

q2νp(qν) = ∞.
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Then every bounded solution of (1.7) oscillates on [a,∞). If in addition

lim
n→∞

{

qn
∞
∑

ν=n

p(qν)τ(qν )

}

= ∞,

then every solution of (1.7) is oscillatory on [a,∞).

Next we present the main result of this section using the Riccati
substitution. We first need the following auxiliary result which is proved
in [3].

Lemma 4.7. If x and z are differentiable functions such that x(t) 6= 0
for all t ∈ T, then

(4.7) (z∆)2 = x∆

(

z2

x

)∆

+ xxσ

[

( z

x

)∆
]2

.

Theorem 4.8. Assume that (4.1) and (4.2) hold. If there exists a

differentiable function z such that

(4.8) lim
t→∞

∫ t

a

{

z2(σ(s))

σ(s)
p(s)τ(s) −

(

z∆(s)
)2

}

∆s = ∞,

then every solution of (1.3) is oscillatory on [a,∞).

Proof. Again we suppose that x is an eventually positive solution of
(1.3). Then there exists t0 ∈ T such that (2.6) holds. We introduce the
Riccati substitution

w =
z2x∆

x
and observe that we have eventually

−w∆ (2.2)
=

z2(x∆)2 −
[

(zσ)2x∆∆ + (z2)∆x∆
]

x

xxσ

(1.3)
=

(zσ)2p(x ◦ τ)

xσ
− x∆

(

z2

x

)∆

(4.5)

≥ (zσ)2pτ
σ

− x∆

(

z2

x

)∆

(4.7)
=

(zσ)2pτ
σ

+ xxσ

[

( z

x

)∆
]2

− (z∆)2

(2.6)

≥ (zσ)2pτ
σ

− (z∆)2.
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Thus we have for sufficiently large t ≥ t1 ≥ a

w(t1)
(2.6)

≥ w(t1) − w(t)

(2.3)
= −

∫ t

t1

w∆(s)∆s

≥
∫ t

t1

{

z2(σ(s))

σ(s)
p(s)τ(s) −

(

z∆(s)
)2

}

∆s

(4.8)→ ∞ as t → ∞.

This contradiction completes the proof.

The following two corollaries are immediate, where in Theorem 4.8
we choose z(t) ≡ 1 and z(t) =

√
t, respectively.

Corollary 4.9. Assume that (4.1) and (4.2) hold. If

lim
t→∞

∫ t

a

p(s)
τ(s)

σ(s)
∆s = ∞,

then every solution of (1.3) is oscillatory on [a,∞).

Corollary 4.10. Assume that (4.1) and (4.2) hold. If

lim
t→∞

∫ t

a

{

p(s)τ(s) − 1
(√

s +
√

σ(s)
)2

}

∆s = ∞,

then every solution of (1.3) is oscillatory on [a,∞).

Sometimes the following criterion is easier to check than the one given
in Corollary 4.10, but it follows easily from Corollary 4.10 as we always
have σ(t) ≥ t for all t ∈ T.

Corollary 4.11. Assume that (4.1) and (4.2) hold. If

lim
t→∞

∫ t

a

{

p(s)τ(s) − 1

4s

}

∆s = ∞,

then every solution of (1.3) is oscillatory on [a,∞).
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The following example illustrates Corollary 4.11.

Example 4.12. Consider the delay dynamic equation

(4.9) x∆∆(t) +
γ

tτ(t)
x(τ(t)) = 0 for t ≥ 1,

where τ satisfies (4.1). By (2.8) we have

∫ t

1

σ(s)p(s)∆s =

∫ t

1

γσ(s)

sτ(s)
∆s ≥

∫ t

1

γ

s
∆s → ∞ as t → ∞.

Also

lim
t→∞

∫ t

a

{

τ(s)p(s) − 1

4s

}

∆s = lim
t→∞

∫ t

a

{

γ

s
− 1

4s

}

∆s = ∞

provided that γ > 1/4. By Corollary 4.11, every solution of (4.9) oscil-
lates if γ > 1/4.

Now we give the Kamenev-type oscillation criteria for (1.3). Since
the proof is similar to that of the proof of [21, Theorem 3.2], we will
omit it.

Theorem 4.13. Assume (4.1) and (4.2). Furthermore assume that

for every odd n ∈ N

lim
t→∞

1

tn

∫ t

a

(t − s)n

{

τ(s)p(s) − 1

4s

}

∆s = ∞.

Then every solution of (1.3) is oscillatory on [a,∞).
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