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1. Introduction

Difference equations are important objects of study from both theoretical and practical

points of view. Difference schemes arise in numerical integration of differential equations.

Besides, they are convenient mathematical models of objects whose evolution has discrete

character. A good example of such a model is the model of a financial market with the

change in prices of risky assets at discrete points of time (see [20]). In the simplest case,

the function that describes the total capital of an investor at this market satisfies a linear

difference equation. Since the change in value of shares (risky asset) is of oscillatory

nature, so is the evolution of the total capital. Therefore, oscillatory solutions become

especially important in such models.

Oscillatory properties of solutions of difference equations were studied by numerous

authors, e.g. [1,3,13,14,18,17], to name only a few. For corresponding equations on time

scales, the notion of a generalized zero of a solution and oscillation of solutions were

investigated in, e.g. [2,4,6,7,16], again to name only a few.

The qualitative properties of solutions of ordinary differential equations and

corresponding difference equations, provided the step size h . 0 goes to zero, are of

particular interest (see, e.g. [9] and references therein). The works [8,10] investigate the

relation between existence of attractors in systems of differential equations and

corresponding difference equations.

Thework [11] generalizes theRunge–Kutta schemebyconstructing a hybrid systemfor an

autonomous system of differential equations. The authors investigate the question of uniform

global asymptotic stability of the trivial solution of this hybrid system. They show that the

main condition for such stability is uniform global asymptotic and local exponential stability

of the trivial solution of the corresponding autonomous system of differential equations.
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The papers [12,22] establish the existence of bounded solutions of differential

equations on the axis, provided the corresponding difference equations have such

solutions, and vice versa.

It is well known (see, e.g. [9, p. 114]) that on finite time intervals, solutions of

difference equations behave essentially the same as solutions of corresponding differential

equations for small step sizes h . 0, and the error at the nodal points is proportional to h.

However, this error estimate does not guarantee that oscillatory properties of solutions

are preserved.

The question of the relation between oscillation of the solutions of linear difference

and the corresponding differential equations was considered in the works [5,21]. The paper

[21] established existence of oscillation of solutions of linear second-order difference

equations for sufficiently small step sizes h . 0, provided that solutions of corresponding

differential equations have this property. The converse result was obtained in [5].

The aforementioned works study oscillation of a fixed solution of some Cauchy

problem for a difference equation, given that the solution of the Cauchy problem with the

same initial data for the corresponding differential equation has such property, and vice

versa. In this approach, the step size h . 0 depends on the initial data, and the coefficients

have certain smoothness requirements which are somewhat artificial for such equations.

The natural question which arises is whether there exists a universal step size h . 0,

independent of the choice of the initial conditions, which would guarantee the oscillation

properties uniformly in the initial data.

In this paper, our main result establishes the existence of such step size h. Besides, we

provide several generalizations of the results in [21]. In particular, we study oscillation

properties of linear functional second-order difference and differential equations. We also

remove the technical smoothness conditions on the coefficients, replacing them with a

more natural Lipschitz condition.

This paper consists of this introduction and two further sections. Section 2 provides the

formulation of the problem and some preliminary results. In our opinion, these results are

of separate interest themselves. The main results of this paper are given in Section 3.

2. Problem statements and auxiliary results

Consider the linear second-order differential equation

€xþ pðtÞ_xþ qðtÞx ¼ 0: ð2:1Þ
The following equations are called the functional difference equation and the difference

equation, corresponding to (2.1), respectively:

D2xðtÞ þ hpðtÞDxðtÞ þ h2qðtÞxðtÞ ¼ 0; ð2:2Þ
D2
kxðt0Þ þ hpðt0 þ khÞDkxðt0Þ þ h2qðt0 þ khÞxðt0 þ khÞ ¼ 0: ð2:3Þ

Here

DxðtÞ ¼ xðt þ hÞ2 xðtÞ; D2xðtÞ ¼ DðDxðtÞÞ ¼ xðt þ 2hÞ2 2xðt þ hÞ þ xðtÞ;
Dkxðt0Þ ¼ xðt0 þ ðk þ 1ÞhÞ2 xðt0 þ khÞ; D2

kxðt0Þ ¼ DkðDkxðt0ÞÞ:
Denote by xhk ¼ xðtkÞ the solution of (2.3), where tk ¼ t0 þ kh.
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Definition 2.1. (See [21]) We say that the solution xhk of (2.3) changes sign at tk if either

one of the following conditions holds:

(1) xhkx
h
kþ1 , 0;

(2) xhk ¼ 0 and xhk21x
h
kþ1 , 0.

Definition 2.2. (See [21]) A solution xhk of (2.3) is called oscillatory on some interval if it

has at least two changes of signs on this interval.

We study (2.2) under conditions that ensure continuity of its solutions. Thus, we have

the usual concept of a zero for solutions of (2.2), and the notion of oscillation of its

solutions is essentially the same as for solutions of (2.1).

In this paper, we give conditions ensuring the existence of a (universal) step size

h . 0, for which oscillation of solutions of (2.1) follows from oscillation of solutions of

(2.2) and (2.3). We also obtain the converse result.

We start with some preliminary results. Consider the system of functional difference

equations in Rd

xhðt þ hÞ ¼ xhðtÞ þ hXðt; xhðtÞÞ; ð2:4Þ
where h . 0 is the step size and Xð·; xÞ is defined and continuous on ½0;1Þ, x [ D is a set

in Rd. For fixed h . 0, any solution of (2.4) may be extended uniquely to ðh;1Þ with the

initial function w defined on ½0; h�, i.e. xhðtÞ ¼ wðtÞ for t [ ½0; h�. In this case, the

coherence condition

wðhÞ ¼ wð0Þ þ hXð0;wð0ÞÞ ð2:5Þ
clearly holds. If w is continuous on ½0; h� and (2.5) is satisfied, then xh is a continuous

function defined on ½0;1Þ as long as xhðt2 hÞ [ D. Consider now (2.4) for t ¼ t0 þ kh,

where t0 is fixed:

xhkþ1 ¼ xhk þ hXðt0 þ kh; xhkÞ; ð2:6Þ
k [ N0, h . 0, xhk ¼ xhðt0 þ khÞ. System (2.6) is a system of difference equations. Its

solutions may be extended uniquely to the right, using the initial data xh0 ¼ xhðt0Þ for k . 0

as long as xhk21 [ D.

Let Ix h be the maximal interval for which the solution xh of (2.4) may be extended to

the right. Similarly, let Ixh
k
be the maximal interval of extension of the solution xhk of (2.6).

The following auxiliary result holds.

Lemma 2.3. Let xh be the solution of (2.4) with the given initial function w [ Cð½0; h�Þ
satisfying (2.5). Then, for each t [ Ix h , there exists a unique t0 [ ½0; h� and k ¼ kðtÞ such
that xhðtÞ ¼ xhk, where xhk is the solution of the initial value problem

xhkþ1 ¼ xhk þ hXðt0 þ kh; xhkÞ;
xh0 ¼ wðt0Þ:

8<
: ð2:7Þ

Proof. The proof immediately follows from the definitions of solutions of (2.4) and

(2.6). A

M. Bohner et al.1114



By Lemma 2.3, every solution of (2.4) with the initial function w satisfying (2.5)

comprises solutions of the initial value problem (2.7) with the initial condition xh0 ¼ wðt0Þ,
where t0 [ ½0; h�.

We now consider (2.1) for t [ ½0; a�, a . 0, and p; q [ Cð½0; a�Þ. We study the

solution x of (2.1) with the initial data xðt0Þ ¼ x0, _xðt0Þ ¼ x1, where t0 [ ½0; �h�,

x20 þ x21 ¼ 1; ð2:8Þ
and �h [ ð0; aÞ is fixed. It follows from [19] that x exists and is unique on the entire interval

½0; a�. If this solution oscillates on ð0; aÞ, then it has at least two zeros on this interval. Let

tk; tkþ1 be two consecutive zeros of x on ð0; aÞ. Consider the (finite) sequence of amplitudes

of oscillations of the solution x on the interval ð0; aÞ
Mx

k :¼ max
t[½tk ;tkþ1�

jxðtÞj:

The following auxiliary result gives a uniform lower bound on the amplitudes of

solutions.

Lemma 2.4. Assume p; q [ Cð½0; a�Þ. Then there exists D . 0 such that for an arbitrary

oscillatory solution of (2.1) with the initial data (2.8), we have

Mx
k $ D: ð2:9Þ

Proof. We argue by contradiction. Assume (2.9) does not hold. Then there exists an infinite

sequence of oscillatory solutions fxn}n[N with the initial data described by tn [ ½0; �h� and
x0n, x1n satisfying (2.8), and such that for each n from the sequence of amplitudes of these

solutions, we can choose an amplitude Mxn
kðnÞ such that the sequence fMxn

kðnÞ} formed from

these numbers satisfies the condition

Mxn
kn
! 0 as n!1; ð2:10Þ

where Mxn
kn
¼ maxt[½tn

kn
;tn
knþ1

�jxnðtÞj. Let t*n be the point at which this maximum is attained.

Then _xnðt*nÞ ¼ 0 and jxnðt*nÞj ¼ Mxn
kðnÞ. Since the set of the initial data (2.8) is compact, there

exists a convergent subsequence of ðtn; x0n; x1nÞ, which is still denoted by ðtn; x0n; x1nÞ, such
that

ðtn; x0n; x1nÞ! ðt0; x0; x1Þ as n!1; ð2:11Þ
where t0 [ ½0; �h�, x20 þ x21 ¼ 1. Similarly, ft*n}n[N also has a convergent subsequence,

which is still denoted by ft*n}. Thus, t*n ! t * [ ½0; a� as n!1.

Let x be the solution of (2.1) with the initial data xðt0Þ ¼ x0, _xðt0Þ ¼ x1. Due to (2.8), x

is not identically zero. Using the continuous dependence of solutions of the Cauchy

problem on the finite interval on the initial data, together with the inequality

jxnðt*nÞ2 xðt *Þj # jxnðt*nÞ2 xðt*nÞj þ jxðt*nÞ2 xðt *Þj;
we get

xnðt*nÞ! xðt *Þ and _xnðt*nÞ! _xðt *Þ:
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On the other hand, xnðt*nÞ! 0 as n!1 and _xnðt*nÞ ¼ 0 for every n. Thus, x must be the

trivial solution, a contradiction that completes the proof. A

Let x be an oscillatory solution of (2.1) on ð0; aÞ, tk its zeros on this interval, and t*k the
points between its zeros, in which the modulus of x attains its maximum. Let IxD;k be a

symmetric and closed neighbourhood of t*k such that for every t [ IxD;k, we have

jxðtÞj $ D=2. Denote by jIxD;kj the length of this interval.

Lemma 2.5. Assume the conditions of Lemma 2.4 hold. Then there exists d . 0 such that

for an arbitrary oscillatory solution of (2.1) on ð0; aÞ with initial data (2.8), we have

jIxD;kj $ 2d: ð2:12Þ

Proof. We argue by contradiction. Assume (2.12) is not satisfied. Then, similarly as in the

argument of the proof of Lemma 2.4, there exists an infinite sequence of oscillatory

solutions xnðtÞ on ð0; aÞ with initial data tn [ ½0; h�, x0n, x1n which satisfy (2.8), and there

exists kðnÞ such that

IxnD;kn

��� ���! 0 as n!1: ð2:13Þ
Since the intervals IxnD;kn are symmetric, (2.13) means that at least one of the one-sided

neighbourhoods of each of them becomes arbitrarily small. Assume this is the right

neighbourhood.

We can assume that on the interval ½tnk ; tnkþ1�, the solution xn is non-negative. Let t*n be

the midpoint of the interval IxnD;kn . By construction, xnðt*nÞ ¼ maxt[½tn
k
;tn
kþ1

�xðtÞ. Let tðnÞD;k be

right-end point of the neighbourhood IxnD;kðnÞ. Then

xn tðnÞD;k

� �
¼ D

2
:

By virtue of Lemma 2.4,

xnðt*nÞ $ D:

Using Lagrange’s formula, we have

xnðt*nÞ2 xnðtðnÞD;kÞ
��� ��� ¼ _xnðunÞj j tðnÞD;k 2 t*n

��� ���; ð2:14Þ

where un [ ðt*n; tðnÞD;kÞ. The left-hand part of (2.14) is at least D=2. Since jtðnÞD;k 2 t*nj! 0, we

obtain j_xnðunÞj!1 as n!1. On the other hand, _xn ¼ _xð·; tn; x0n; x1nÞ is continuous on the
compact interval ½0; a� and thus is, due to (2.8), bounded on ½0; a�. Since un [ ½0; a� for all
n [ N, we thus cannot have j_xnðunÞj!1 as n!1. This contradiction completes the

proof. A

Along with (2.4), we consider the corresponding system of differential equations

dx

dt
¼ Xðt; xÞ ð2:15Þ

for t $ 0, x [ D, where D is a set (possibly closed) in Rd.
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Definition 2.6. The solutions x and xhk of (2.15) and (2.6) are called corresponding if

xðt0Þ ¼ xh0 ¼ x0 [ D.

The following lemma holds for corresponding solutions.

Lemma 2.7. Assume X [ Cð½0; a� £ DÞ satisfies
(1) there exists M . 0 such that jXðt; xÞj # M, t [ ½0; a�, x [ D;

(2) there exists L . 0 such that for arbitrary t1; t2 [ ½0; a�, x1; x2 [ D, we have

jXðt1; x1Þ2 Xðt2; x2Þj # L jt1 2 t2j þ jx1 2 x2j
� �

:

If the corresponding solutions of (2.6) and (2.15) are defined on the interval ½t0; t0 þ T�,
then the estimate

jxðt0 þ khÞ2 xhkj # Ch ð2:16Þ
holds, where C depends only on M, L and T.

Proof. The proof is obtained by a slight modification of the scheme of proof of [9, Lemma

5.1.2, p. 114], taking into account [9, Proposition 5.2.2, p. 118]. A

The following result applies to (2.15) and (2.6), namely, to systems of the form

dx

dt
¼ AðtÞx ð2:17Þ

and

xhkþ1 ¼ xhk þ hAðt0 þ khÞxhk : ð2:18Þ

If A is continuous on ½0;1Þ, then all solutions of (2.17) and (2.18) exist on the entire right
semi-axis. We consider the solutions with the initial data

t0 [ ½0; �h�; jx0j ¼ 1; ð2:19Þ
where �h is chosen in (2.8). Let MðTÞ :¼ max½t0;t0þT�kAðtÞk, where T . 0 is fixed.

Lemma 2.8. Let x and xhk be solutions of the Cauchy problems for (2.17) and (2.18),

respectively, with the initial data (2.19). Then there exists R . 0, which depends only on T

and M, such that for t [ ½t0; t0 þ T�, t0 þ kh [ ½t0; t0 þ T�, we have

jxðtÞj # R; jxhkj # R: ð2:20Þ

Proof. The first inequality in (2.20) is a simple consequence of the properties of linear

systems of differential equations. The second inequality in (2.20) is a consequence of

similar properties for systems of difference equations (see, for example, [15, p.35]). A

Remark 2.9. Note that R, which appears in Lemma 2.8, does not depend on h.
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We now consider the converse problem: under which conditions does oscillation of

solutions of differential equations implies oscillation of solutions of corresponding

difference equations? It is well known (see, e.g. [19, p. 207]) that if p is smooth on

½0; a�, the linear substitution z ¼ wðtÞx eliminates the first derivative in (2.1). Since the

zeros of the solutions remain unchanged under this substitution, without loss of

generality, we focus our attention on the oscillatory properties of the solutions of

equations in the form

€xþ pðtÞx ¼ 0: ð2:21Þ
Assume that the following conditions hold:

pðtÞ $ 0; t [ ½0; a� ð2:22Þ
and

p is Lipschitz on ½0; a�: ð2:23Þ
The difference equation corresponding to (2.21) is

D2
kxþ h2pðkhÞxðkhÞ ¼ 0: ð2:24Þ

We now study conditions under which oscillation of solutions of (2.24) implies

oscillation of corresponding solutions of (2.21). We start with the following

preliminary results. Rewrite (2.24) as a system

xhkþ1 ¼ xhk þ hyhk ;

yhkþ1 ¼ yhk 2 hpðkhÞxhk

8<
: ð2:25Þ

with the initial conditions

xh0 ¼ x0; yh0 ¼ y0; where x20 þ y20 ¼ 1: ð2:26Þ

Now oscillation of xhk of (2.24) on ½0; a� is equivalent to oscillation of the first

component of (2.25) on the same interval. Let ðxhk ; yhkÞ be an oscillatory solution of

(2.25) on ½0; a� with the initial conditions (2.26). By Definition 2, xhk has at least two

changes of sign on ½0; a�. Let tp and tm be two consecutive points at which xhk changes

sign. Introduce

Mx
pðhÞ :¼ max

k[½pþ1;m�
xhk
�� ��;

which is the amplitude of oscillation of xhk between tp and tm.

Lemma 2.10. Assume p is continuous on ½0; a� and satisfies (2.12). Then there exists

DðhÞ . 0 such that for any oscillatory solution of (2.25) with the initial data (2.26), we

have

Mx
pðhÞ $ DðhÞ: ð2:27Þ
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Proof. Assume (2.27) fails to hold. Then there exist an infinite sequence of oscillatory

solutions ðxhkðnÞ; yhkðnÞÞ of (2.25) on ½0; a�, with the initial data ðx0n; y0nÞ satisfying (2.26),

and sequences fpðnÞ} and fmðnÞ} (consecutive points of sign changes of xhkðnÞ) such that

Mxn
pðnÞðhÞ! 0 as n!1; ð2:28Þ

where Mxn
pðnÞðhÞ ¼ maxk[½pðnÞþ1;mðnÞ� xhkðnÞ

�� ��. Let tn be the point of the interval ½ðpðnÞ þ
1Þh;mh�where this maximum is attained. Since the set of the initial data (2.26) is compact,

we can choose a convergent subsequence, still denoted by ðx0n; y0nÞ, such that

ðx0n; y0nÞ! ðx0; y0Þ as n!1 ð2:29Þ
and x20 þ y20 ¼ 1. We know that all Mxn

pðnÞðhÞ . 0 as otherwise we would have considered

solutions with opposite sign. Obviously, there is a point k0h [ ð0; aÞ at which for an

infinite number of solutions from the sequence ðxhkðnÞ; yhkðnÞÞ, we have

xhk0ðnÞ ¼ Mxn
pðnÞðhÞ: ð2:30Þ

Let us consider this subsequence of solutions. Denote it by ðxhkðrÞ; yhkðrÞÞ and their initial

data by ðx0r; y0rÞ. Consider now the solution ð�xhk ; �yhkÞ of (2.25) with initial data ðx0; y0Þ from
(2.29). Clearly, it is not identically zero. Using uniqueness and the continuous dependence

of solutions on the initial data, we obtain

�xhk0 ¼ 0; �xhk021 , 0; xhk0þ1 , 0: ð2:31Þ

Note that by Definition 2.1, k0h is an interior point of the interval ½0; a�. By (2.25), we have
�xhk0 2 xhk021 ¼ hyhk021;

�yhk0 2 �yhk021 ¼ 2hpðk0hÞ�xk021:

8<
: ð2:32Þ

Using (2.31) and (2.32), we have that yhk021 . 0. Similarly, �xhk0þ1 2 �xhk0 ¼ hyhk0 , and thus

yhk0 , 0, which leads to a contradiction to the second equation in (2.32). A

Lemma 2.10 allows the possibility that DðhÞ may depend on h. The following result

shows that this number may be chosen independently of h.

Lemma 2.11. Assume p satisfies (2.22) and (2.23). Then there exist h0 . 0 and B0 . 0

such that for all h [ ð0; h0�, we have

DðhÞ $ B0: ð2:33Þ

Proof. By contradiction, assume there exists a sequence of step sizes fhn}, hn . 0, hn ! 0

as n!1 such that

DðhnÞ! 0 as n!1: ð2:34Þ
Therefore, there exists an oscillatory solution ðxhnk ; yhnk Þ of (2.25) on ½0; a� with the initial

data ðx0n; y0nÞ satisfying (2.26), and all of its amplitudes satisfy

Mxn
pðnÞðhnÞ! 0 as n!1: ð2:35Þ
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Up to a subsequence, still denoted by ðx0n; y0nÞ, we have

ðx0n; y0nÞ! ðx0; y0Þ as n!1: ð2:36Þ

Choose tn [ ½0; a�, tn ¼ knhn, such that xhnkn ¼ Mxn
pðnÞðhnÞ, where, as before, we assume that

xhnkn . 0. Thus, (2.35) now reads

xhnkn ! 0 as n!1: ð2:37Þ

Passing to a further subsequence, still denoted by ftn}, we have tn ! t0 as n!1,

t0 [ ½0; a�. Furthermore, it follows from Lemma 2.8 that fyhnkn} is uniformly bounded in n,

and thus, up to a subsequence,

yhnkn ! y 0 as n!1: ð2:38Þ

Due to Definition 2.1, both tn21 and tn are in ½0; a�, and thus

lim
n!1tn21 ¼ lim

n!1tn ¼ t0: ð2:39Þ

By the definition of kn, we have

xhnkn21 # xhnkn and xhnkn $ xhnknþ1: ð2:40Þ

Now, rewrite (2.25) as

xhnknþ1 2 xhnkn ¼ hny
hn
kn
;

yhnknþ1 2 yhnkn ¼ 2hnpðknhnÞxhnkn

8<
: ð2:41Þ

and

xhnkn 2 xhnkn21 ¼ hny
hn
kn21;

yhnkn 2 yhnkn21 ¼ 2hnpððkn 2 1ÞhnÞxhnkn21:

8<
: ð2:42Þ

Since, by Lemma 2.8, xhnk and yhnk are uniformly bounded, the right-hand sides in (2.41) and

(2.42) go to zero as n!1. Therefore, using (2.37) and (2.38), we obtain

lim
n!1x

hn
knþ1 ¼ lim

n!1x
hn
kn21 ¼ 0 ð2:43Þ

and

lim
n!1y

hn
knþ1 ¼ lim

n!1y
hn
kn21 ¼ y0: ð2:44Þ

Now, applying (2.40) to the first equations in (2.41) and (2.42), we find

yhnkn21 $ 0 and yhnkn # 0: ð2:45Þ
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Combining (2.38), (2.44) and (2.45), we get

y0 ¼ 0: ð2:46Þ
Let xð·; x0; y0Þ be the solution of (2.21) with initial data (2.36). Clearly, it is not identically
zero. Let xð·; x0n; y0nÞ be the solution of (2.21) with the initial data ðx0n; y0nÞ. By continuity

xðtn; x0; y0Þ! xðt0; x0; y0Þ as n!1: ð2:47Þ
Moreover, the continuous dependence of solutions on initial data implies that

xðtn; x0n; y0nÞ2 xðtn; x0; y0Þj j! 0 as n!1: ð2:48Þ
Lemma 2.8 implies that all solutions of the Cauchy problem (2.21) and the difference

system (2.25) with the initial data (2.26) are uniformly bounded on ½0; a�. Consequently, it
follows from Lemma 2.7 that (2.16) holds uniformly at the nodal points. In other words, C

from Lemma 2.7 and R from Lemma 2.8 depend only on a and on the maximum of jpðtÞj
on ½0; a�. Therefore,

xðtn; x0n; y0nÞ2 xhnkn

��� ���! 0 as n!1: ð2:49Þ

Due to (2.37), we have by (2.47), (2.48) and (2.49) that

xðt0; x0; y0Þ ¼ 0 ð2:50Þ
holds. In a similar way, we obtain

_xðt0; x0; y0Þ ¼ 0 ð2:51Þ
which, due to (2.50), contradicts the fact that xðt; x0; y0Þ is non-trivial. A

3. Main results

In this section, we present the main results about the relation between oscillation of

solutions of (2.1), (2.2), (2.3), (2.21) and (2.24). These equations are equivalent to the

following systems:

dx

dt
¼ y;

dy

dt
¼ 2pðtÞy2 qðtÞx;

8>>><
>>>:

ð3:1Þ

xðt þ hÞ ¼ xðtÞ þ hyðtÞ;
yðt þ hÞ ¼ yðtÞ2 hðpðtÞyðtÞ þ qðtÞxðtÞÞ;

(
ð3:2Þ

xhkþ1 ¼ xhk þ hxhk ;

yhkþ1 ¼ yhk 2 hðpðt0 þ khÞyhk þ qðt0 þ khÞxhkÞ:

8<
: ð3:3Þ

Systems (3.2) and (3.3) are of the form (2.4) and (2.6), respectively. Therefore, the

solutions of (3.2) are uniquely determined by the initial functions x ¼ wðtÞ, y ¼ cðtÞ,
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t [ ½0; h� which satisfy the coherence condition

wðhÞ ¼ wð0Þ þ hcð0Þ;
cðhÞ ¼ cð0Þ2 h pð0Þcð0Þ þ qð0Þwð0Þ� �

:

8<
: ð3:4Þ

In what follows, we assume that w;c [ Cð½0; h�Þ. The solutions of (3.3) are uniquely

determined by the initial data

xh0ðt0Þ ¼ x0; yh0ðt0Þ ¼ y0:

For the statements of our following main results, recall from Definition 2.6 that the

solutions x and xhk of (2.15) and (2.6) are called corresponding if xðt0Þ ¼ xh0 ¼ x0 [ D.

Theorem 3.1. Let p and q in (2.1) be Lipschitz on ½0; a�. Then there exists h0 . 0 such that

for all h [ ð0; h0�, the following assertion holds: if x is a solution of (2.1) which starts at

t0 [ ½0; h� and has at least three zeros on ½t0; aÞ, then the corresponding solution of the

difference equation (2.3) oscillates on ½t0; a�.

Proof. Consider (2.3) for h # �h, where �h is chosen from (2.8). It is convenient to treat (2.3)

as a system (3.3) in order to track the sign change of xhk . Equation (2.1) and systems (3.1)

and (3.3) satisfy all conditions of Lemmas 2.4, 2.5, 2.7 and 2.8. Fix r [ ð0;D=2Þ, where D
is given in Lemma 2.4, and let h1 :¼ minf�h; d}, where d is defined in Lemma 2.5. It

follows from Lemma 2.8 that all solutions of (3.1) and (3.3) with the initial data given at

t0 [ ½0; h� are bounded by some R . 0 for t [ ½t0; a�, t0 þ kh [ ½t0; a� and h # h1. Note

thatM in Lemma 2.8 depends only on the maxima of functions jpj and jqj on ½0; a�; R also

depends only on a and M. Choosing D ¼ B0ðRÞ in Lemma 2.7, we may conclude that for

the corresponding solutions of (3.1) and (3.3), (2.16) holds with C independent of a, R and

M. Finally, choose h0 [ ð0; h1� such that for 0 , h # h0, the right-hand side of (2.16)

satisfies the condition

Ch # r: ð3:5Þ

For such h, let x be an arbitrary non-trivial solution of (2.1) with the initial data xðt0Þ ¼ x0,

_xðt0Þ ¼ x1, t0 [ ½0; h�, which has at least three zeros on ðt0; aÞ. We would like to show that

the corresponding solution ðxhk ; yhkÞ of (3.3) has at least two changes of sign of xhk on ðt0; aÞ.
To this end, define t0 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ x21

p
. Due to linearity,

1

t0
ðxðtÞ; _xðtÞÞ ¼ ðzðtÞ; jðtÞÞ and

1

t0
ðxhk ; yhkÞ ¼ ðzhk ; jhkÞ

also satisfy (3.1) and (3.3), respectively, while the component zðtÞ has the same zeros as

xðtÞ, and zhk has the same changes of sign as xhk . The initial data of the solution ðz; jÞ satisfy
(2.8). Consider a r-neighbourhood of ðzðtÞ; jðtÞÞ for t [ ½t0; a�. The function z has at least

two amplitudes of oscillations on ðt0; aÞ. Moreover, for an appropriate choice of h0 and

n [ N, t0 þ nh [ IzD;k, appearing in Lemma 2.5. Thus, it follows from (3.5) that at

t0 þ nh [ IzD;k and at t0, z
h
k has the same sign as zðtÞ, and, therefore has at least two changes

of sign. A
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Consider now (2.2), or the equivalent system (3.2). The following result follows from

Theorem 3.1 and Lemma 2.3.

Theorem 3.2. Let p and q in (2.2) be Lipschitz on ½0; a�. Then there exists h0 . 0 such that

for all h [ ð0; h0�, the following statement holds: every solution of (3.2) with the initial

functions w;c [ Cð½0; h�Þ satisfying (3.4) has oscillatory first component on ð0; aÞ,
provided that there exists t0 [ ½0; h� such that the solution of (2.1) with the initial data

Xðt0Þ ¼ wðt0Þ; _xðt0Þ ¼ cðt0Þ

has at least three zeros on ðt0; aÞ.

Consider now (2.21), the corresponding functional difference equation

D2xðtÞ þ h2pðtÞxðtÞ ¼ 0; ð3:6Þ

and the difference equation

D2
kxðt0Þ þ h2pðt0 þ khÞxðt0 þ khÞ ¼ 0 ð3:7Þ

with p satisfying the Lipschitz condition on ½0; a�. Let

m ¼ min
t[½0;a�

pðtÞ and M ¼ max
t[½0;a�

pðtÞ:

Assume

m . 0 and a .
3pffiffiffiffi
m

p : ð3:8Þ

If

a2 �h .
3pffiffiffiffi
m

p ; ð3:9Þ

then all solutions of (2.21) with the initial data t0 [ ½0; �h� have at least three zeros on

½t0; aÞ. Taking into account this fact, from Theorem 3.1 and Theorem 3.2, we can obtain

the following two corollaries about oscillation of the solutions of (3.6) and (3.7).

Corollary 3.3. Assume p is Lipschitz on ½0; a� and (3.8) and (3.9) hold. Then there exists
h0 . 0 such that for all h [ ð0; h0�, all solutions of (3.7) with the initial data given at

t0 [ ½0; h� oscillate on ½t0; aÞ.

Corollary 3.4. Assume p is Lipschitz on ½0; a� and (3.8) and (3.9) hold. Then there exists
h0 . 0 such that for all h [ ð0; h0�, all solutions of the system

xðt þ hÞ ¼ xðtÞ þ hyðtÞ;
yðt þ hÞ ¼ yðtÞ2 hpðtÞxðtÞ

(
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with the initial functions w;c [ Cð½0; h�Þ satisfying the coherence condition

wðhÞ ¼ wð0Þ þ hcð0Þ;
cðhÞ ¼ cð0Þ2 hpð0Þwð0ÞÞ

(

have an oscillatory first component on (0, a).

Example 3.5. If we take in (3.6)

pðtÞ ¼ t þ 1 and a ¼ 4p;

then all conditions of Corollary 3.3 and Corollary 3.4 are satisfied.

The following theorem describes the relation between oscillation of the solutions of

(2.1) and (2.24).

Theorem 3.6. Let p satisfy (2.22) and (2.23). Then there exists h0 such that for all

h [ ð0; h0�, the following assertion holds: if xhk is a solution of (2.24) which has at least

three changes of sign on ½0; a�, then the corresponding solution of the differential equation
(2.2) oscillates on ½0; a�.

Proof. Rewrite (2.21) as

dx

dt
¼ y;

dy

dt
¼ 2pðtÞx:

8>>><
>>>:

ð3:10Þ

As noted in the proof of Lemma 2.11, there is a uniform estimate (2.16) at the nodal points

of the solutions of (2.25) and (3.10) with the initial data ðx0; y0Þ, x20 þ y20 ¼ 1, given at

t0 ¼ 0, where C depends only on a and on the maximum of jpj over ½0; a�. Choose

Ch1 #
B0

2
; ð3:11Þ

where B0 is defined in Lemma 2.11. Then for all

0 , h # minfh0; h1}; ð3:12Þ
(3.11) and the assertion of Lemma 2.11 hold. Fix hwhich satisfies (3.12), and let ðxhk ; yhkÞ be
an arbitrary non-trivial solution of (2.25) such that its first component xhk has at least three

changes of sign on ½0; a�. Let ðx0; y0Þ be its initial data. We want to show that the solution

of (2.21) with initial data xð0Þ ¼ x0, _xð0Þ ¼ y0 oscillates on ½0; a�. Define

r0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

p
– 0. Clearly,

1

r0
ðxðtÞ; _xðtÞÞ ¼ ðzðtÞ; jðtÞÞ and

1

r0
ðxhk ; yhkÞ ¼ ðzhk ; jhkÞ

solve (2.25) and (3.10), respectively. Then zðtÞ has the same zeros as xðtÞ, zhk has the same

changes of sign as xhk and the initial conditions for ðzðtÞ; jðtÞÞ and ðzhk ; jhkÞ satisfy (2.26).
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Now, consider a r-neighbourhood of ðzhk ; jhkÞ for kh [ ½0; a�, where r # ðB0=2Þ. Since zhk
has at least three changes of sign, zhk has at least two amplitudes of oscillation. Let k0h and

p0h be the points at which these amplitudes are attained. Then zhk0 and zhp0 must have

different signs. Inequalities (2.16), (3.11) and Lemma 2.11 imply that zðtÞ at t ¼ 0,

t ¼ k0h, t ¼ p0h has the same sign as zhk , and, therefore, has at least two zeros on ½0; a�.
Consequently, xðtÞ has at least two zeros on ½0; a�, and this means that it is oscillatory. A

Remark 3.7. We can consider our results as results on the particular time scale hZ (see [6]).

Corresponding results for more general time scales such as, e.g. qN0 , will be presented in a

forthcoming paper of the authors.

Acknowledgements

This work is partially supported by the FFR of Ukraine under Grant No. 0113U003068. The authors
would like to thank the referees for their careful reading of themanuscript and their valuable comments.

References

[1] R.P. Agarwal, Difference equations and inequalities: Theory, methods, and applications, in
Monographs and Textbooks in Pure and Applied Mathematics, 2nd ed., Vol. 228, Marcel
Dekker Inc., New York, 2000.

[2] R.P. Agarwal and M. Bohner, An oscillation criterion for first order delay dynamic equations,
Funct. Differ. Equ. 16(1) (2009), pp. 11–17.

[3] R.P. Agarwal, M. Bohner, S.R. Grace, and D. O’Regan, Discrete Oscillation Theory, Hindawi
Publishing Corporation, New York, 2005.

[4] R.P. Agarwal, M. Bohner, T. Li, and C. Zhang, Oscillation of third-order nonlinear delay
differential equations, Taiwanese J. Math. 17(2) (2013), pp. 545–558.

[5] A.M. Ateiwi, Oscillatory properties of the solutions of differential equations and their stability.
PhD thesis, Kyiv, 1997.

[6] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with
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