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Separated and State-Constrained Separated Linear Programming
Problems on Time Scales

Rasheed Al-Salih and Martin Bohner

abstract: Separated linear programming problems can be used to model a wide
range of real-world applications such as in communications, manufacturing, trans-
portation, and so on. In this paper, we investigate novel formulations for two classes
of these problems using the methodology of time scales. As a special case, we obtain
the classical separated continuous-time model and the state-constrained separated
continuous-time model. We establish some of the fundamental theorems such as the
weak duality theorem and the optimality condition on arbitrary time scales, while
the strong duality theorem is presented for isolated time scales. Examples are given
to demonstrate our new results.

Key Words:Time scales, Separated linear programming problem, State con-
strained, Weak duality theorem, Optimality condition, Strong duality theorem.
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1. Introduction

It is well known that discrete-time linear programming problems have numerous
applications in areas such as portfolio optimization, crew scheduling, manufactur-
ing, transportation, telecommunication, agriculture, and so on. Continuous-time
linear programming problems were first studied by Bellman [6] as a bottleneck
process. He established the weak duality theorem and optimality conditions. A
computational approach has been presented by Bellman and Dreyfus [7]. The
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strong duality theorem was studied by Tyndall [35,36] and Levinson [26]. Grinold
[23] has established strong duality without discretizing the continuous problem.
A numerical solution to continuous-time linear programming was considered by
Buie and Abrham [22]. Jasiulek [25] has characterized the extreme points of the
feasibility set of continuous-time linear programming problems. Wen et al. [43]
have presented an approximation approach to solve continuous-time problems. A
new class called separated continuous-time linear programming problems has been
investigated by Anderson and Nash [2,3] and Pullan [30,31,32,33]. This class has
many applications such as, for example, job-shop scheduling problems. A simplex-
based algorithm for solving the separated type of problems has been considered by
Weiss [42]. An approximation algorithm has been used by Wang et al. [41] to solve
separated continuous-time linear programming problems. Luo and Bertsimas [27]
have presented an extension of the separated model called state-constrained sepa-
rated model. Xiaoqing [37] has studied duality theorems for separated continuous
linear programming and its extensions. Separated continuous linear programs with
an application for service operation have been studied by Wang [39]. An applica-
tion of separated problems to emergency department staffing has been presented
by Wang [38]. Wang [40] has investigated duality theorems and solution methods
for stochastic separated continuous programming.

The theory of time scales, on the other hand, was first introduced by Stefan
Hilger in 1988 in his PhD dissertation, see [24]. The purpose of this theory is
to unify discrete and continuous analysis and to offer an extension to cases “in
between”. Many applications in mathematical modelling exist for this theory, e.g.,
to optimal control [5,18,19,20,21,29], population biology [9], calculus of variations
[8,10,13], and economics [4,11,14,15,34].

In this paper, we demonstrate that separated problems can be efficiently formu-
lated and solved using time scales techniques. The new formulation yields the sep-
arated continuous-time model and the state-constrained separated continuous-time
model as special cases (i.e., by setting T = R). The paper is organized as follows:
In Section 2, some examples related to time scales calculus are given. In Section
3, we recall some recent results by the authors [1] about linear primal and dual
programs on time scales. In Section 4, the basic structures of the primal and dual
separated linear programming models are formulated. For the separated model,
the weak duality theorem and the optimality condition theorem are established for
arbitrary time scales, and the strong duality theorem is presented for isolated time
scales. In Section 5, examples are given to demonstrate the duality theorems for
separated models. In Section 6, we present the state-constrained separated pri-
mal and dual models and establish the weak duality theorem and the optimality
condition theorem for state-constrained separated models on arbitrary time scales,
while the strong duality is stated and proved for isolated time scales. Examples are
presented in Section 7 to demonstrate our new results for state-constrained model.
In Section 8, some conclusions are given.
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2. Time Scales Calculus

In this section, instead of introducing the basic definitions, derivative, and
integral on time scales, we refer the reader to the monographs [12,16,17], in which
comprehensive details and complete proofs are given. For readers not familiar with
the time scales calculus, we give the following few examples. Throughout, T is
the time scale, σ is the forward jump operator, µ is the graininess, f : T → R is
a function, fσ = f ◦ σ is the advance of f , f∆ is the delta derivative of f , and
∫ b

a
f(t)∆t is the time scales integral of f between a, b ∈ T.

Example 2.1. If T = R, then

σ(t) = t, µ(t) ≡ 0, f∆(t) = f ′(t) for t ∈ T,

and
∫ b

a

f(t)∆t =

∫ b

a

f(t)dt, where a, b ∈ T with a < b,

is the usual Riemann integral from calculus.

Example 2.2. If T = {tk ∈ R : k ∈ N0} with tk < tk+1 for all k ∈ N0 consists
only of isolated points (i.e., it is an isolated time scale), then

σ(tk) = tk+1, µ(tk) = tk+1 − tk, f∆(tk) =
f(tk+1)− f(tk)

tk+1 − tk
for k ∈ N0,

and

∫ tn

tm

f(t)∆t =

n−1
∑

k=m

µ(tk)f(tk), where m,n ∈ N0 with m < n. (2.1)

The examples in Sections 5 and 7 are specific cases of Example 2.2 as follows.

Example 2.3. Let h > 0. If T = hZ = {hk : k ∈ Z}, then

σ(t) = t+ h, µ(t) ≡ h, f∆(t) =
f(t+ h)− f(t)

h
for t ∈ T,

and
∫ b

a

f(t)∆t = h

b

h
−1

∑

k= a

h

f(kh), where a, b ∈ T with a < b.

Example 2.4. Let q > 1. If T = qN0 = {qn : n ∈ N0}, then

σ(t) = qt, µ(t) = (q − 1)t, f∆(t) =
f(qt)− f(t)

(q − 1)t
for t ∈ T,

and

∫ qn

qm
f(t)∆t = (q − 1)

n−1
∑

k=m

qkf(qk), where m,n ∈ N0 with m < n.
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3. Linear Programming Problems

Throughout this paper, T stands for a time scale, we assume 0 ∈ T, we let
T ∈ T, and we use I to denote the time scales interval

I = [0, T ] ∩ T.

By Ek, we denote the space of all rd-continuous functions (i.e., functions that are
continuous in points t ∈ T with σ(t) = t, and their left-sided limits exist in points
t ∈ T with ρ(t) = t, where the backward jump ρ is defined analagously to the
forward jump ρ) from I into R

k. In [1], the authors have introduced the primal
time scales programming problem as























Maximize U(x) =

∫ σ(T )

0

f⊤(t)x(t)∆t

subject to B(t)x(t) ≤ g(t) +

∫ t

0

K(t, s)x(s)∆s, t ∈ I

and x ∈ En, x(t) ≥ 0, t ∈ I,

(P)

where f ∈ En, g ∈ Em, and B and K are rd-continuous m×n matrix-valued func-
tions. Moreover, in [1], the dual time scales programming problem is introduced
as



























Minimize V (z) =

∫ σ(T )

0

g⊤(t)z(t)∆t

subject to B⊤(t)z(t) ≥ f(t) +

∫ σ(T )

σ(t)

K⊤(s, t)z(s)∆s, t ∈ I

and z ∈ Em, z(t) ≥ 0, t ∈ I.

(D)

A feasible solution of (P) (or (D)) is any one that satisfies the given constraints. An
optimal solution to (P) (or (D)) is a feasible solution with the largest (or smallest)
objective function value. In [1], the following results are established.

Theorem 3.1 (Weak Duality Theorem). If x and z are arbitrary feasible solutions
of (P) and (D), respectively, then U(x) ≤ V (z).

Theorem 3.2 (Optimality Condition). If there exist feasible solutions x∗ and z∗

of (P) and (D), respectively, such that U(x∗) = V (z∗), then x∗ and z∗ are optimal
solutions of their respective problems.

Theorem 3.3 (Strong Duality Theorem). Assume T is an isolated time scale. If
(P) has an optimal solution x∗, then (D) has an optimal solution z∗ such that
U(x∗) = V (z∗).

4. Separated Problems

In this section, we formulate the primal and the dual models for separated linear
programming problems on arbitrary time scales. This formulation is an extension
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of separated continuous-time linear programming problems that are presented in
[2,3,30,31,32,33,38,39] by using the methodology of time scales introduced by the
authors in [1]. The primal time scales separated linear programming model is
formulated as



































Maximize U(x) =

∫ σ(T )

0

f⊤(t)x(t)∆t

subject to

∫ t

0

G(t, s)x(s)∆s ≤ a(t), t ∈ I

B(t)x(t) ≤ b(t), t ∈ I

and x ∈ En, x(t) ≥ 0, t ∈ I,

(SP)

where f ∈ En, a ∈ Em1
, b ∈ Em2

, and B and G are rd-continuous matrix-valued
functions of size m2 × n and m1 × n, respectively. Rewriting the two inequalities
in (SP) as one inequality

(

0
B(t)

)

x(t) ≤

(

a(t)
b(t)

)

+

∫ t

0

(

−G(t, s)
0

)

x(s)∆s,

we can put (SP) in the form (P), then find the dual (D), and then rewrite (D) as



























Minimize V (y, z) =

∫ σ(T )

0

[

a⊤(t)y(t) + b⊤(t)z(t)
]

∆t

subject to

∫ σ(T )

σ(t)

G⊤(s, t)y(s)∆s+B⊤(t)z(t) ≥ f(t), t ∈ I

and y ∈ Em1
, z ∈ Em2

, y(t), z(t) ≥ 0, t ∈ I.

(SD)

A feasible solution of (SP) (or (SD)) is any one that satisfies the given constraints.
An optimal solution to (SP) (or (SD)) is a feasible solution with the largest (or
smallest) objective function value. Theorems 3.1–3.3 can now be rewritten as
follows.

Theorem 4.1 (Weak Duality Theorem). If x and (y, z) are arbitrary feasible so-
lutions of (SP) and (SD), respectively, then U(x) ≤ V (y, z).

Theorem 4.2 (Optimality Condition). If there exist feasible solutions x∗ and
(y∗, z∗) of (SP) and (SD), respectively, such that U(x∗) = V (y∗, z∗), then x∗ and
(y∗, z∗) are optimal solutions of their respective problems.

Theorem 4.3 (Strong Duality Theorem). Assume T is an isolated time scale. If
(SP) has an optimal solution x∗, then (SD) has an optimal solution (y∗, z∗) such
that U(x∗) = V (y∗, z∗).

5. Examples (Separated)

In this section, three examples are given in order to illustrate our duality theo-
rems on isolated time scales.
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Example 5.1. Let T = Z and I = {0, 1, 2, 3}. Then, we consider the isolated time
scales separated linear programming primal model











































Maximize U(x) =

∫ σ(3)

0

tx(t)∆t =

3
∑

t=0

tx(t)

subject to

∫ t

0

x(s)∆s =
t−1
∑

s=0

x(s) ≤ t2, t ∈ I

6x(t) ≤ t+ 1, t ∈ I

and x(t) ≥ 0, t ∈ I,

where we have used σ and the integral given in Example 2.3 with h = 1. Using
MATLAB command linprog or LINDO solver, we have

x∗(0) = 0.000000, x∗(1) = 0.333333, x∗(2) = 0.500000,

x∗(3) = 0.666667, U(x∗) = 3.333333.

On the other hand, the isolated time scales separated linear programming dual model
is



















































Minimize

V (y, z) =

∫ σ(3)

0

[

t2y(t) + (t+ 1)z(t)
]

∆t

=

3
∑

t=0

[

t2y(t) + (t+ 1)z(t)
]

subject to

∫ σ(3)

σ(t)

y(s)∆s =

3
∑

s=t+1

y(s) ≥ t− 6z(t), t ∈ I

and y(t), z(t) ≥ 0, t ∈ I,

where we have used again Example 2.3 with h = 1. Using MATLAB command
linprog or LINDO solver, we have

z∗(0) = 0.000000, z∗(1) = 0.166667, z∗(2) = 0.333333, z∗(3) = 0.500000,

y∗(0) = 0.000000, y∗(1) = 0.000000, y∗(2) = 0.000000, y∗(3) = 0.000000,

and the optimal value is V (y∗, z∗) = 3.333333, confirming U(x∗) = V (y∗, z∗).

Example 5.2. Let T = 5Z and I = {0, 5, 10, 15, 20}. Then, we consider the
isolated time scales separated linear programming primal model











































Maximize U(x) =

∫ σ(20)

0

tx(t)∆t = 25

4
∑

k=0

kx(5k)

subject to

∫ t

0

x(s)∆s = 5

t

5
−1
∑

k=0

x(5k) ≤ 2t, t ∈ I

8x(t) ≤ t+ 1, t ∈ I

and x(t) ≥ 0, t ∈ I,



Programming Problems on Time Scales 187

where we have used σ and the integral given in Example 2.3. Using MATLAB
command linprog or LINDO solver, we have

x∗(0) = 0.000, x∗(5) = 0.750, x∗(10) = 1.375,

x∗(15) = 2.000, x∗(20) = 2.625, U(x∗) = 500.000.

On the other hand, the isolated time scales separated linear programming dual model
is



















































Minimize

V (y, z) =

∫ σ(20)

0

[2ty(t) + (t+ 1)z(t)]∆t

= 5

4
∑

k=0

[10ky(5k) + (5k + 1)z(5k)]

subject to

∫ σ(20)

σ(t)

y(s)∆s = 5
4

∑

k= t

5
+1

y(5k) ≥ t− 8z(t), t ∈ I

and y(t), z(t) ≥ 0, t ∈ I,

where we have used once more Example 2.3. Using MATLAB command linprog or
LINDO solver, we have

z∗(0) = 0.000, z∗(5) = 0.625, z∗(10) = 1.250,

z∗(15) = 1.875, z∗(20) = 2.500,

y∗(0) = 0.000, y∗(5) = 0.000, y∗(10) = 0.000,

y∗(15) = 0.000, y∗(20) = 0.000,

and the optimal value is V (y∗, z∗) = 500, confirming U(x∗) = V (y∗, z∗).

Example 5.3. Let T = 2N0 and I = {1, 2, 4}. Then, we consider the isolated time
scales separated linear programming primal model











































Maximize U(x) =

∫ σ(22)

1

tx(t)∆t =

2
∑

k=0

4kx(2k)

subject to

∫ t

1

x(s)∆s =

log
2
t−1

∑

k=0

2kx(2k) ≤ t2, t ∈ I

6x(t) ≤ t+ 1, t ∈ I

and x(t) ≥ 0, t ∈ I,

where we have used σ and the integral given in Example 2.4. Using MATLAB
command linprog or LINDO solver, we have

x∗(1) = 0.333333, x∗(2) = 0.500000,

x∗(4) = 0.833333, U(x∗) = 15.66667.
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On the other hand, the isolated time scales separated linear programming dual model
is



















































Minimize

V (y, z) =

∫ σ(22)

1

[

t2y(t) + (t+ 1)z(t)
]

∆t

=
2

∑

k=0

2k
[

(2k)2y(2k) + (2k + 1)z(2k)
]

subject to

∫ σ(4)

σ(t)

y(s)∆s =

2
∑

k=1+log
2
t

2ky(2k) ≥ t− 6z(t), t ∈ I

and y(t), z(t) ≥ 0, t ∈ I,

where we have used again Example 2.4. Using MATLAB command linprog or
LINDO solver, we have

y∗(1) = 0.000000, y∗(2) = 0.000000, y∗(4) = 0.000000,

z∗(1) = 0.166667, z∗(2) = 0.333333, z∗(4) = 0.666667,

and the optimal value is V (y∗, z∗) = 15.66667, confirming U(x∗) = V (y, z∗).

6. State-Constrained Separated Problems

In this section, we formulate primal and the dual models for state-constrained
separated linear programming problems on arbitrary time scales T. This formula-
tion extends state-constrained separated continuous-time linear programming prob-
lems as presented in [28,39,43], using the methodology of time scales as introduced
by Al-Salih and Bohner [1]. The primal time scales state-constrained separated
linear programming model is formulated as











































Maximize U(u, x) =

∫ σ(T )

0

[

c⊤(t)u(t) + f⊤(t)x(t)
]

∆t

subject to

∫ t

0

G(t, s)u(s)∆s+B(t)x(t) ≤ a(t), t ∈ I

H(t)u(t) ≤ b(t), t ∈ I

F (t)x(t) ≤ h(t), t ∈ I

and u, x ∈ En, x(t), u(t) ≥ 0, t ∈ I,

(SCP)

where c, f ∈ En, a ∈ Em1
, b ∈ Em2

, h ∈ Em3
, B and G are rd-continuous matrix-

valued functions of size m1 × n, and H and F are rd-continuous matrix-valued
functions of size m2 × n and m3 × n, respectively. Rewriting the three inequalities
in (SCP) as one inequality





H(t) 0
0 B(t)
0 F (t)





(

u(t)
x(t)

)

≤





b(t)
a(t)
h(t)





∫ t

0





0 0
−G(t, s) 0

0 0





(

u(s)
x(s)

)

∆s,
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we can put (SCP) in the form (P), then find the dual (D), and then rewrite (D) as


































Minimize V (y, w, z) =

∫ σ(T )

0

[

a⊤(t)y(t) + b⊤(t)w(t) + h⊤(t)z(t)
]

∆t

subject to

∫ σ(T )

σ(t)

G⊤(s, t)y(s)∆s+H⊤(t)w(t) ≥ c(t), t ∈ I

B⊤(t)y(t) + F⊤(t)z(t) ≥ f(t), t ∈ I

and y ∈ Em1
, w ∈ Em2

, z ∈ Em3
, y(t), w(t), z(t) ≥ 0, t ∈ I.

(SCD)
A feasible solution of (SCP) (or (SCD)) is any one that satisfies the given con-
straints. An optimal solution to (SCP) (or (SCD)) is a feasible solution with the
largest (or smallest) objective function value. Theorems 3.1–3.3 can now be rewrit-
ten as follows.

Theorem 6.1 (Weak Duality Theorem). If (u, x) and (y, w, z) are arbitrary fea-
sible solutions of (SCP) and (SCD), respectively, then U(u, x) ≤ V (y, w, z).

Theorem 6.2 (Optimality Condition). If there are feasible solutions (u∗, x∗) and
(y∗, w∗, z∗) of (SCP) and (SCD), respectively, with U(u∗, x∗) = V (y∗, w∗, z∗), then
x∗ and z∗ are optimal solutions of their respective problems.

Theorem 6.3 (Strong Duality Theorem). Assume T is an isolated time scale.
If (SCP) has an optimal solution (u∗, x∗), then (SCD) has an optimal solution
(y∗, w∗, z∗) such that U(u∗, x∗) = V (y∗, w∗, z∗).

7. Examples (State-Constrained Separated)

In this section, three examples are given in order to illustrate our duality theo-
rems on isolated time scales.

Example 7.1. Let T = Z and I = {0, 1, 2, 3}. Then, we consider the isolated time
scales state-constrained separated linear programming primal model



















































Maximize U(x) =

∫ σ(3)

0

[tu(t) + 5tx(t)]∆t =

3
∑

t=0

[tu(t) + 5tx(t)]

subject to

∫ t

0

x(s)∆s =

t−1
∑

s=0

x(s) ≤ t2 + 3− 10x(t), t ∈ I

6u(t) ≤ t+ 1, t ∈ I

2x(t) ≤ t+ 2, t ∈ I

and x(t), u(t) ≥ 0, t ∈ I,

where we have used σ and the integral given in Example 2.3 with h = 1. Using
MATLAB command linprog or LINDO solver, we have

x∗(0) = 0.000000, x∗(1) = 0.400000, x∗(2) = 0.700000,

x∗(3) = 1.150000, u∗(0) = 0.000000, u∗(1) = 0.000000,

u∗(2) = 0.500000, u∗(3) = 0.666667, U(u∗, x∗) = 29.25000.
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On the other hand, the isolated time scales state-constrained separated linear pro-
gramming dual model is


























































Minimize

V (y, w, z) =

∫ σ(3)

0

[

(t2 + 3)y(t) + (t+ 1)w(t) + (t+ 2)z(t)
]

∆t

=

3
∑

t=0

[

(t2 + 3)y(t) + (t+ 1)w(t) + (t+ 2)z(t)
]

subject to

∫ σ(3)

σ(t)

y(s)∆s =

3
∑

s=t+1

y(s) ≥ t− 6w(t), t ∈ I

10y(t) + 2z(t) ≥ 5t, t ∈ I

and y(t), w(t), z(t) ≥ 0, t ∈ I,

where we have used again Example 2.3 with h = 1. Using MATLAB command
linprog or LINDO solver, we have

y∗(0) = 0.00000, y∗(1) = 0.50000, y∗(2) = 1.00000, y∗(3) = 1.50000,

w∗(0) = 0.00000, w∗(1) = 0.16667, w∗(2) = 0.08333, w∗(3) = 0.50000,

z∗(0) = 0.00000, z∗(1) = 0.00000, z∗(2) = 0.00000, z∗(3) = 0.00000,

and the optimal value is

V (y∗, w∗, z∗) = 29.25000,

confirming U(u∗, x∗) = V (y∗, w∗, z∗).

Example 7.2. Let T = 5Z and I = {0, 5, 10, 15, 20}. Then, we consider the
isolated time scales state-constrained separated linear programming primal model







































































Maximize

U(u, x) =

∫ σ(20)

0

[

tu(t) + t2x(t)
]

∆t

= 5

4
∑

k=0

[

5ku(5k) + (5k)2x(5k)
]

subject to

∫ t

0

u(s)∆s = 5

t

5
−1
∑

k=0

u(5k) ≤ t+ 1− 10x(t), t ∈ I

3u(t) ≤ t+ 1, t ∈ I

2x(t) ≤ t2 + 3, t ∈ I

and x(t), u(t) ≥ 0, t ∈ I,

where we have used σ and the integral given in Example 2.3. Using MATLAB
command linprog or LINDO solver, we have

x∗(0) = 0.000000, x∗(5) = 0.600000, x∗(10) = 1.100000,

x∗(15) = 1.600000, x∗(20) = 2.100000,

u∗(0) = 0.000000, u∗(5) = 0.000000, u∗(10) = 0.000000,

u∗(15) = 0.000000, u∗(20) = 13.666667, U(x∗) = 7991.667000.
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On the other hand, the isolated time scales state-constrained separated linear pro-
gramming dual model is































































Minimize

V (y, w, z) =

∫ σ(20)

0

[

(t+ 1)(y(t) + w(t)) + (t2 + 3)z(t)
]

∆t

= 5

4
∑

k=0

[

(5k + 1)(y(5k) + w(5k)) + (25k2 + 3)z(5k)
]

subject to

∫ σ(20)

σ(t)

y(s)∆s = 5

4
∑

k= t

5
+1

y(5k) ≥ t− 3w(t), t ∈ I

10y(t) + 2z(t) ≥ t2, t ∈ I

and y(t), w(t), z(t) ≥ 0, t ∈ I,

where we have used again Example 2.3. Using MATLAB command linprog or
LINDO solver, we have

y∗(0) = 0.000000, y∗(5) = 2.500000, y∗(10) = 10.000000,

y∗(15) = 22.500000, y∗(20) = 40.000000,

w∗(0) = 0.000000, w∗(5) = 0.000000, w∗(10) = 0.000000,

w∗(15) = 0.000000, w∗(20) = 6.666667,

z∗(0) = 0.000000, z∗(5) = 0.000000, z∗(10) = 0.000000,

z∗(15) = 0.000000, z∗(20) = 0.000000,

and the optimal value is

V (y∗, w∗, z∗) = 7991.667000,

confirming U(u∗, x∗) = V (y∗, w∗, z∗).

Example 7.3. Let T = 2N0 and I = {1, 2, 4}. Then, we consider the isolated time
scales state-constrained separated linear programming primal model







































































Maximize

U(x) =

∫ σ(22)

1

[

tu(t) + t3x(t)
]

∆t

=

2
∑

k=0

2k
[

2ku(2k) + (2k)3x(2k)
]

subject to

∫ t

1

5u(s)∆s = 5

log
2
t−1

∑

k=0

2ku(2k) ≤ 2t+ 1− 20x(t), t ∈ I

10u(t) ≤ t, t ∈ I

4x(t) ≤ t2 + 3, t ∈ I

and x(t), u(t) ≥ 0, t ∈ I,
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where we have used σ and the integral given in Example 2.4. Using MATLAB
command linprog or LINDO solver, we have

x∗(1) = 0.10, x∗(2) = 0.25, x∗(4) = 0.45,

u∗(1) = 0.00, u∗(2) = 0.00, u∗(4) = 0.40,

U(u∗, x∗) = 125.75.

On the other hand, the isolated time scales state-constrained separated linear pro-
gramming dual model is






























































Minimize

V (y, w, z) =

∫ σ(22)

1

[

(2t+ 1)y(t) + tw(t) + (t2 + 3)z(t)
]

∆t

=

2
∑

k=0

2k
[

(2 · 2k + 1)y(2k) + 2kw(2k) + (4k + 3)z(2k)
]

subject to

∫ σ(4)

σ(t)

5y(s)∆s = 5

2
∑

k=1+log
2
t

2ky(2k) ≥ t− 10w(t), t ∈ I

20y(t) + 4z(t) ≥ t3, t ∈ I

and y(t), w(t), z(t) ≥ 0, t ∈ I,

where we have used again Example 2.4. Using MATLAB command linprog or
LINDO solver, we have

y∗(1) = 0.05, y∗(2) = 0.40, y∗(4) = 3.20,

w∗(1) = 0.00, w∗(2) = 0.00, w∗(4) = 0.40,

z∗(1) = 0.00, z∗(2) = 0.00, z∗(4) = 0.00,

V (y∗, w∗, z∗) = 125.75,

confirming U(u∗, x∗) = V (y∗, w∗, z∗).

8. Conclusions

An efficient formulation and a computational approach have been successfully
constructed in this paper to solve two classes of separated linear programming
problems on arbitrary time scales. Discretization-based methods have been used
recently to solve this class of problems, but unfortunately these methods can only
obtain the approximate solutions in most cases. Our formulation has addressed
this issue by finding the exact optimal solution of the problem using an isolated
time scales approach. Another key issue for the discretization-based methods is to
solve both primal and dual models at the same time to abstain the error bound of
the solution, so another by-product of this paper is to obtain the optimal solution
by either solving the primal or the dual problem only, which will reduce the large
computational effort. Moreover, to ensure that our new formulation is a useful
formulation, we have established some fundamental theorems such as the weak
duality theorem and the optimality condition on arbitrary time scales, while the
strong duality theorem is presented for isolated time scales.
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