

The logarithm on time scales

MARTIN BOHNER*

Math Department, University of Missouri-Rolla, Rolla, MO 65401, USA

(Received 1 August 2005)

We briefly present the well-studied exponential function on a time scale and pose the problem of finding an appropriate logarithm function on a time scale.

Keywords: Dynamic equation; Time scales; Exponential function; Logarithm

1. Introduction

An introduction to dynamic equations on time scales can be found in [1,2]. Consider the initial value problem

$$y^{\Delta} = p(t)y, \quad y(t_0) = 1.$$
 (1)

(Note: If the time scale \mathbb{T} is equal to \mathbb{R} , then $y^{\Delta} = y'$, while if $\mathbb{T} = \mathbb{Z}$, then $y^{\Delta} = \Delta y$, but \mathbb{T} is allowed to be any nonempty closed subset of \mathbb{R} .) It is well known that (1) has a unique solution (denoted by $e_p(t, t_0)$ and sometimes abbreviated by e_p) provided $p: \mathbb{T} \to \mathbb{R}$ is rd-continuous and regressive. Regressive means that $1 + \mu(t)p(t) \neq 0$ holds for all $t \in \mathbb{T}$. (Note: If $\mathbb{T} = \mathbb{R}$, then $\mu(t) \equiv 0$, while if $\mathbb{T} = \mathbb{Z}$, then $\mu(t) \equiv 1$.) The set of all regressive functions is an Abelian group under the circle plus addition:

$$p \oplus q = p + q + \mu p q$$
, $\ominus p = -\frac{p}{1 + \mu p}$, $p \ominus q = \frac{p - q}{1 + \mu q}$.

Next, defining scalar multiplication by $\alpha \odot p = \alpha p \int_0^1 (1 + \mu(t)p(t)h)^{\alpha-1} dh$ for $\alpha \in \mathbb{R}$, the set of all positively regressive functions (i.e., $1 + \mu(t)p(t) > 0$ for all $t \in \mathbb{T}$) is made into a vector space. We have:

$$e_p e_q = e_{p \oplus q}, \quad rac{e_p}{e_a} = e_{p \ominus q}, \quad e_p^lpha = e_{lpha \odot p}.$$

2. Open Problem

Define a "nice" logarithm function on time scales and present its properties.

^{*}Email: bohner@umr.edu

1306 M. Bohner

3. First Approach

The Euler-Cauchy differential equation $t^2y'' - 3ty' + 4y = 0$ has $y_1(t) = t^2$ and $y_2(t) = t^2 \ln t$ as two solutions. It can be checked that two solutions of the Euler-Cauchy dynamic equation $t\sigma(t)y^{\Delta\Delta} - 3ty^{\Delta} + 4y = 0$ are

$$y_1(t) = e_{2/t}(t, t_0)$$
 and $y_2(t) = e_{2/t}(t, t_0) \int_{t_0}^{t} \frac{\Delta \tau}{\tau + 2\mu(\tau)},$ (2)

where $t_0 \in \mathbb{T}$. Note that $e_{2/t}$ is the time scales analogue of t^2 so that we somehow could view the integral in (2) as the time scales analogue of $\ln t$.

4. Second Approach

It could also be natural to define a logarithm by

$$L_p(t,t_0) = \int_{t_0}^t \frac{p^{\Delta}(\tau)}{p(\tau)} \Delta \tau.$$
 (3)

Pertinent to the definition (3), the following three formulas hold:

$$\frac{(pq)^{\Delta}}{pq} = \frac{p^{\Delta}}{p} \oplus \frac{q^{\Delta}}{q}, \quad \frac{(p/q)^{\Delta}}{p/q} = \frac{p^{\Delta}}{p} \ominus \frac{q^{\Delta}}{q}, \quad \alpha \odot \frac{p^{\Delta}}{p} = \frac{(p^{\alpha})^{\Delta}}{p^{\alpha}}.$$

But now the resulting formulas are not "nice", e.g.:

$$L_{pq}(t,t_0) = L_p(t,t_0) + L_q(t,t_0) + \int_{t_0}^t \frac{\mu(\tau)p^{\Delta}(\tau)q^{\Delta}(\tau)}{p(\tau)q(\tau)} \Delta \tau.$$

References

- [1] Bohner, M. and Peterson, A., 2001, Dynamic Equations on Time Scales: An Introduction with Applications (Boston: Birkhäuser).
- [2] Bohner, M. and Peterson, A., 2003, Advances in Dynamic Equations on Time Scales (Boston: Birkhäuser).