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1. INTRODUCTION

A time scale is an arbitrary nonempty closed subset of the real numbers. Time

scales analysis unifies and extends continuous and discrete analysis, see [3, 5]. The

Laplace transform on time scales was introduced by Hilger in [6], but in a form that

tries to unify the (continuous) Laplace transform and the (discrete) Z-transform.

For arbitrary time scales, the Laplace transform was introduced and investigated by

Bohner and Peterson in [4] (see also [3, Section 3.10]). It was further developed by

the authors in [1, 2].

Let T be a time scale with the forward jump operator σ and the delta differenti-

ation operator ∆. Let µ(t) = σ(t) − t for t ∈ T (the so-called graininess of the time

scale). A function p : T → C is called regressive if

1 + µ(t)p(t) 6= 0 for all t ∈ T.

The set of all regressive and rd-continuous functions p : T → C will be denoted by

R. Suppose p ∈ R and fix s ∈ T. Then the initial value problem

(1.1) y∆(t) = p(t)y(t), y(s) = 1

has a unique solution on T. This solution is called the exponential function and is

denoted by ep(t, s).
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Assume that sup T = ∞ and fix t0 ∈ T. Below we assume that z is a complex

constant which is regressive, i.e., 1+µ(t)z 6= 0 for all t ∈ T. Therefore ez(·, t0) is well

defined on T. Suppose x : [t0,∞)T → C is a locally ∆-integrable function, i.e., it is

∆-integrable over each compact subinterval of [t0,∞)T. Then the Laplace transform

of x is defined by

(1.2) L{x}(z) =

∫ ∞

t0

x(t)

ez(σ(t), t0)
∆t for z ∈ D{x},

where D{x} consists of all complex numbers z ∈ R for which the improper integral

exists.

The following two concepts are introduced and investigated by the authors in [1].

For a function f : [t0,∞)T → C, its shift (or delay) f̂(t, s) is defined as the solution

of the problem

(1.3)
f̂∆t(t, σ(s)) = −f̂∆s(t, s), t, s ∈ T, t ≥ s ≥ t0,

f̂(t, t0) = f(t), t ∈ T, t ≥ t0.

For given functions f, g : [t0,∞)T → C, their convolution f ∗ g is defined by

(1.4) (f ∗ g)(t) =

∫ t

t0

f̂(t, σ(s))g(s)∆s, t ∈ T, t ≥ t0.

This paper is organized as follows. In Section 2, we specify and investigate the

above concept of Laplace transform for time scales which have graininess that is

bounded below by a strictly positive number. These are special cases of so-called

isolated time scales. The concept of time scales is actually not needed there and in

the remainder of this paper, since all statements and proofs are given directly without

referring to this theory. Only this present Section 1 contains time scales concepts and

hence shows the origin of this development. However, for a reader to follow the rest

of this paper, it is not necessary to be familiar with time scales theory. In Section

3, we present the convolution theorem and a discrete analogue of a classical theorem

of Titchmarsh, while Section 4 features a formula for the calculation of the inverse

Laplace transform. Finally, in Section 5, we discuss several examples of time scales

for which our theory applies, e.g., (see [7, 8]) hZ with h > 0, qN0 with q > 1, and Np
0

with p ≥ 1.

2. THE LAPLACE TRANSFORM

Throughout we let tn be real numbers for all n ∈ N0 such that

(2.1) lim
n→∞

tn = ∞ and ωn := tn+1 − tn > 0 for all n ∈ N0,

while we assume in the main results of this paper that

(2.2) lim
n→∞

tn = ∞ and ω := inf
n∈N0

ωn > 0, where ωn := tn+1 − tn for n ∈ N0
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holds. Note that, for example, the numbers

tn = hn, n ∈ N0 and tn = qn, n ∈ N0,

where h > 0 and q > 1, respectively, satisfy our assumption (2.2), while the numbers

tn =
√

n, n ∈ N0 and tn = ln n, n ∈ N

do not satisfy our assumption (2.2).

Let z be a complex number such that

(2.3) z 6= − 1

ωn

for all n ∈ N0.

Then the solution ez(tn, tm) of the (see (1.1)) problem

y(tn+1) = (1 + ωnz)y(tn), y(tm) = 1, m, n ∈ N0

satisfies

(2.4) ez(tn, tm) =
n−1∏
k=m

(1 + ωkz) if n ≥ m

and

ez(tn, tm) =
1

m−1∏
k=n

(1 + ωkz)

if n ≤ m,

where the products for m = n are understood, as usual, to be 1. Thus, in conformance

with (1.2), we make the following definition.

Definition 2.1. Assume (2.1). If x : {tn : n ∈ N0} → C is a function, then its

Laplace transform is defined by

(2.5) x̃(z) = L{x}(z) =
∞∑

n=0

ωnx(tn)
n∏

k=0

(1 + ωkz)

for those values z ∈ C satisfying (2.3) for which this series converges.

Let us recall our assumptions (2.2) and (2.3). Define

(2.6) Pn(z) :=
n∏

k=0

(1 + ωkz), n ∈ N0,

which is a polynomial in z of degree n + 1. It is easily verified that

(2.7) Pn(z)− Pn−1(z) = zωnPn−1(z), n ∈ N0

and

(2.8)
1

Pn−1(z)
− 1

Pn(z)
= z

ωn

Pn(z)
, n ∈ N0

hold, where P−1(z) ≡ 1.
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The numbers αn = −ω−1
n , n ∈ N0, belong to the real axis interval [−ω−1, 0). For

any δ > 0 and n ∈ N0, we set

(2.9) Dδ := C \
∞⋃

n=0

Dn
δ , where Dn

δ := {z ∈ C : |z − αn| < δ} , n ∈ N0

so that Dδ is a closed domain of the complex plane C, and the points of Dδ are in

distance not less than δ from the set {αn : n ∈ N0}.

Lemma 2.2. Assume (2.2), (2.3), (2.6), and (2.9). For any z ∈ Dδ, we have

(2.10) |Pn(z)| ≥ (δω)n+1 and |Pn(z)| ≥ δ(δω)nωn for all n ∈ N0.

Moreover,

(2.11) lim
n→∞

Pn(z) = ∞ for all z ∈ Dδ provided δ > ω−1.

Proof. For any z ∈ Dδ and n ∈ N0, we have

|Pn(z)| =

∣∣∣∣∣
n∏

k=0

(1 + ωkz)

∣∣∣∣∣ =

∣∣∣∣∣
n∏

k=0

(ωk(z − αk))

∣∣∣∣∣
= ωn

(
n−1∏
k=0

ωk

)(
n∏

k=0

|z − αk|

)
≥ ωnω

nδn+1 = δ(δω)nωn.

Thus the proof of the second statement in (2.10) is complete. The first statement in

(2.10) follows from the second statement in (2.10), and (2.11) follows from (2.10).

Example 2.3. Let us show that

L{1}(z) =
1

z
and L{eα(·, t0)}(z) =

1

z − α
.

We have for z ∈ Dδ, with δ > ω−1, using (2.5), (2.6), (2.8), and (2.11),

L{1}(z) =
∞∑

n=0

ωn

Pn(z)
=

1

z

∞∑
n=0

[
1

Pn−1(z)
− 1

Pn(z)

]
=

1

z
lim

m→∞

[
1− 1

Pm(z)

]
=

1

z
.

Now we find the Laplace transform of the function eα(t) = eα(t, t0), for which we

have by (2.4) and (2.6),

eα(tn) =
n−1∏
k=0

(1 + ωkα) = Pn−1(α) for n ∈ N0.

It follows that

ẽα(z) = L{eα}(z) =
∞∑

n=0

ωneα(tn)

Pn(z)
=

∞∑
n=0

ωnPn−1(α)

Pn(z)
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=
∞∑

n=0

ωn

1 + ωnz

n−1∏
k=0

1 + ωkα

1 + ωkz
=

∞∑
n=0

ωn

1 + ωnz

n−1∏
k=0

α− αk

z − αk

.(2.12)

Since the numbers αk, k ∈ N0, are contained in the finite interval [−ω−1, 0), there is

a sufficiently large number R0 > 0 such that

(2.13)

∣∣∣∣α− αk

z − αk

∣∣∣∣ ≤ 1

2
for all |z| ≥ R0 and k ∈ N0.

Therefore the series (2.12) converges for |z| ≥ R0, because∣∣∣∣ ωn

1 + ωnz

∣∣∣∣ =
1

|z − αn|
≤ 1

δ

is bounded. Next, we can write, using (2.8),

ẽα(z) =
∞∑

n=0

ωnPn−1(α)

Pn(z)
=

ω0

P0(z)
+

∞∑
n=1

ωnPn−1(α)

Pn(z)

=
ω0

P0(z)
+

1

z

∞∑
n=1

[
Pn−1(α)

Pn−1(z)
− Pn−1(α)

Pn(z)

]

=
ω0

P0(z)
+

1

z

∞∑
n=1

[
(1 + ωn−1α)Pn−2(α)

Pn−1(z)
− Pn−1(α)

Pn(z)

]

=
ω0

P0(z)
+

1

z

∞∑
n=1

[
Pn−2(α)

Pn−1(z)
− Pn−1(α)

Pn(z)

]
+

α

z

∞∑
n=1

ωn−1Pn−2(α)

Pn−1(z)

=
ω0

P0(z)
+

1

zP0(z)
− 1

z
lim

m→∞

Pm−1(α)

Pm(z)
+

α

z
ẽα(z)

=
1

z
+

α

z
ẽα(z),

where we have used the fact that

lim
m→∞

Pm−1(α)

Pm(z)
= 0

because of

Pm−1(α)

Pm(z)
=

1

1 + ωmz

m−1∏
k=0

α− αk

z − αk

and (2.13). Thus we have obtained the equality

ẽα(z) =
1

z
+

α

z
ẽα(z).

Hence

ẽα(z) =
1

z − α
.

Theorem 2.4. Assume (2.2). If the function x : {tn : n ∈ N0} → C satisfies the

condition

(2.14) |x(tn)| ≤ CRn for all n ∈ N0,
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where C and R are some positive constants, then the series in (2.5) converges uni-

formly with respect to z in the region Dδ with δ > Rω−1 and therefore its sum x̃(z)

is an analytic (holomorphic) function in Dδ.

Proof. By Lemma 2.2 and (2.14), for the general term of the series in (2.5), we have

the estimate∣∣∣∣ωnx(tn)

Pn(z)

∣∣∣∣ ≤ ωnCRn

δ(δω)nωn

=
C

δ

(
R

δω

)n

for n ∈ N0 and z ∈ Dδ.

The series
∞∑

n=0

(
R

δω

)n

converges if δ > Rω−1. This completes the proof.

A large class of functions for which the Laplace transform exists is the class Fδ

of functions x : {tn : n ∈ N0} → C satisfying the condition

(2.15)
∞∑

n=0

(δω)−n|x(tn)| < ∞.

Theorem 2.5. Assume (2.2). For any x ∈ Fδ, the series in (2.5) converges uniformly

with respect to z in the region Dδ, and therefore its sum x̃(z) is an analytic function

in Dδ.

Proof. The proof follows from the second inequality in (2.10) and from (2.15).

Theorem 2.6. Assume (2.2). Let x : {tn : n ∈ N0} → C be a function and define a

new function x∆ : {tn : n ∈ N0} → C by

x∆(tn) =
x(tn + ωn)− x(tn)

ωn

.

Suppose that x ∈ Fδ. Then x∆ ∈ Fδ, too, and

(2.16) L{x∆}(z) = zx̃(z)− x(t0).

Moreover, defining x∆∆ = (x∆)∆, we have that x∆∆ ∈ Fδ and that

(2.17) L{x∆∆}(z) = z2x̃(z)− zx(t0)− x∆(t0).

Proof. We have
∞∑

n=0

(δω)−n|x∆(tn)| =
∞∑

n=0

(δω)−n |x(tn+1)− x(tn)|
ωn

≤ ω−1

∞∑
n=0

(δω)−n [|x(tn+1)|+ |x(tn)|]

= δ

∞∑
n=0

(δω)−n−1|x(tn+1)|+ ω−1

∞∑
n=0

(δω)−n|x(tn)| < ∞
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and therefore x∆ ∈ Fδ. Next, using the definition (2.5) of the Laplace transform, we

find

L{x∆}(z) =
∞∑

n=0

ωnx
∆(tn)

Pn(z)
=

∞∑
n=0

x(tn+1)− x(tn)

Pn(z)

=
∞∑

n=0

x(tn+1)

Pn(z)
−

∞∑
n=0

x(tn)

Pn(z)
=

∞∑
n=0

x(tn+1)

Pn+1(z)
(1 + ωn+1z)−

∞∑
n=0

x(tn)

Pn(z)

=
∞∑

n=0

x(tn+1)

Pn+1(z)
−

∞∑
n=0

x(tn)

Pn(z)
+ z

∞∑
n=0

ωn+1x(tn+1)

Pn+1(z)

= − x(t0)

P0(z)
+ z

[
x̃(z)− ω0x(t0)

P0(z)

]
= −(1 + ω0z)x(t0)

P0(z)
+ zx̃(z) = −x(t0) + zx̃(z)

so that (2.16) holds. The formula (2.17) is obtained by applying (2.16) to x∆.

Theorem 2.7 (Initial Value and Final Value Theorem). Assume (2.2). We have:

(a) If x ∈ Fδ for some δ > 0, then

(2.18) x(t0) = lim
z→∞

{zx̃(z)}.

(b) If x ∈ Fδ for all δ > 0, then

(2.19) lim
n→∞

x(tn) = lim
z→0

{zx̃(z)}.

Proof. Assume x ∈ Fδ for some δ > 0. It follows from (2.5) that

x̃(z) =
ω0x(t0)

1 + ω0z
+

ω1x(t1)

(1 + ω0z)(1 + ω1z)
+

ω2x(t2)

(1 + ω0z)(1 + ω1z)(1 + ω2z)
+ . . .

and

(1 + ω0z)x̃(z) = ω0x(t0) +
ω1x(t1)

1 + ω1z
+

ω2x(t2)

(1 + ω1z)(1 + ω2z)
+ . . . .

Hence

lim
z→∞

x̃(z) = 0 and lim
z→∞

{(1 + ω0z)x̃(z)} = ω0x(t0),

which yield (2.18). To show (2.19), assume x ∈ Fδ for all δ > 0. In the proof of

Theorem 2.6 we have obtained the formula
∞∑

n=0

x(tn+1)− x(tn)

Pn(z)
= zx̃(z)− x(t0).

Hence, using Lemma 2.2 and taking into account that

lim
z→0

Pn(z) = 1 for any n ∈ N0,

it is not difficult to arrive at (2.19).
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3. THE CONVOLUTION

In this section we only assume (2.1). For a given function f : {tn : n ∈ N0} → C,

we consider the shifting problem (see (1.3))

(3.1)

ωm

[
f̂(tn+1, tm+1)− f̂(tn, tm+1)

]
+ ωn

[
f̂(tn, tm+1)− f̂(tn, tm)

]
= 0,

m, n ∈ N0, n ≥ m,

f̂(tn, t0) = f(tn), n ∈ N0.

Theorem 3.1. Assume (2.1). For an arbitrary function f : {tn : n ∈ N0} → C, the

shifting problem (3.1) has a unique solution.

Proof. Setting f̂(tn, tm) = f̂n,m for brevity, we rewrite the shifting problem (3.1) in

the form

ωm

(
f̂n+1,m+1 − f̂n,m+1

)
+ ωn

(
f̂n,m+1 − f̂n,m

)
= 0, m, n ∈ N0, n ≥ m,(3.2)

f̂n,0 = f(tn), n ∈ N0,(3.3)

where f̂n,m defined for m, n ∈ N0 with m ≤ n is a desired solution. Note that for

m = n in (3.2) there arises the term f̂n,n+1 in which the second index is greater than

the first one, but this term arises in (3.2) in two places with the same coefficient

and opposite signs and therefore this term cancels. Assume that f̂n,m is a solution of

problem (3.2), (3.3). Putting in (3.2) m = n, we get

f̂n+1,n+1 = f̂n,n for all n ∈ N0.

Therefore f̂n,n is constant for n ∈ N0, and since f̂0,0 = f(t0) by (3.3), we obtain

(3.4) f̂n,n = f(t0) for all n ∈ N0.

Consequently, it is enough to show that equation (3.2) has a unique solution satisfying

conditions (3.3) and (3.4). We will do this by showing that equation (3.2) can be

solved recurrently under the conditions (3.3) and (3.4). For any i ∈ N0, let us set

Ni = [i,∞) ∩ N0. Putting m = n− 1 with n ∈ N1 in (3.2), we get

ωn−1

(
f̂n+1,n − f̂n,n

)
+ ωn

(
f̂n,n − f̂n,n−1

)
= 0, n ∈ N1.

Hence, taking into account (3.4), we get

(3.5) f̂n+1,n =

(
1− ωn

ωn−1

)
f(t0) +

ωn

ωn−1

f̂n,n−1, n ∈ N1,

and besides, by (3.3),

(3.6) f̂1,0 = f(t1).

Using the initial condition (3.6), we find f̂n+1,n from (3.5) recursively in a unique way

for all n ∈ N0. Next, we put m = n− 2 with n ∈ N2 in (3.2) to get

ωn−2

(
f̂n+1,n−1 − f̂n,n−1

)
+ ωn

(
f̂n,n−1 − f̂n,n−2

)
= 0, n ∈ N2.
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Hence

(3.7) f̂n+1,n−1 =

(
1− ωn

ωn−2

)
f̂n,n−1 +

ωn

ωn−2

f̂n,n−2, n ∈ N2,

and besides, by (3.3),

(3.8) f̂2,0 = f(t2).

In equation (3.7) the term f̂n,n−1 is known for all n ∈ N1 from the first step. Therefore,

using the initial value (3.8), we can find f̂n+1,n−1 from (3.7) recursively in a unique

way for all n ∈ N1. Repeating this procedure, we put m = n − i for n ∈ Ni in (3.2)

to get

ωn−i

(
f̂n+1,n−i+1 − f̂n,n−i+1

)
+ ωn

(
f̂n,n−i+1 − f̂n,n−i

)
= 0, n ∈ Ni.

Hence

(3.9) f̂n+1,n−i+1 =

(
1− ωn

ωn−i

)
f̂n,n−i+1 +

ωn

ωn−i

f̂n,n−i, n ∈ Ni,

and besides, by (3.3),

(3.10) f̂i,0 = f(ti).

In equation (3.9) the term f̂n,n−i+1 is known for all n ∈ Ni−1 from the previous step.

Therefore, using the initial value (3.10), we can find f̂n+1,n−i+1 from (3.9) recursively

in a unique way for all n ∈ Ni−1. Since i ∈ N can be taken arbitrarily, we see that

f̂n,m is constructed in this way uniquely for all m, n ∈ N0 with m ≤ n.

We now introduce the following definition (see (1.4)) of the convolution of two

functions.

Definition 3.2. Assume (2.1), let f, g : {tn : n ∈ N0} → C be two functions, and let

f̂ be the solution of the shifting problem (3.1). Then the convolution f ∗ g of f and

g is defined by (f ∗ g)(t0) = 0 and

(f ∗ g)(tn) =
n−1∑
k=0

ωkf̂(tn, tk+1)g(tk), n ∈ N0.

The following theorem is a discrete analogue of the classical theorem of Titch-

marsh [9, 10] for the usual continuous convolution.

Theorem 3.3. Assume (2.1) and let f, g : {tn : n ∈ N0} → C be two functions. If

f ∗ g is identically equal to zero on {tn : n ∈ N0}, then at least one of the functions

f and g is identically equal to zero on {tn : n ∈ N0}.
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Proof. Assume that f ∗ g is identically zero on {tn : n ∈ N0}. Then we have for any

n ∈ N0, by Definition 3.2 of the convolution and the notation f̂(tn, tm) = f̂n,m,

(3.11)



ω0f̂1,1g(t0) = 0,

ω0f̂2,1g(t0) + ω1f̂2,2g(t1) = 0,

ω0f̂3,1g(t0) + ω1f̂3,2g(t1) + ω2f̂3,3g(t2) = 0,
...

ω0f̂n,1g(t0) + ω1f̂n,2g(t1) + . . . + ωn−1f̂n,ng(tn−1) = 0,

where we can take n ∈ N as large as we wish. It is sufficient to show that if f is not

identically zero on {tn : n ∈ N0}, then g is identically zero on {tn : n ∈ N0}. Thus

assume that f is not identically zero on {tn : n ∈ N0}. Let f(tm) with an m ∈ N0 be

the first of the values of f(t0), f(t1), . . . that is different from zero. Hence

(3.12) f(t0) = . . . = f(tm−1) = 0 and f(tm) 6= 0.

We have to show that then g(tn) = 0 for all n ∈ N0. Let us consider the possible

values of m ∈ N0 in (3.12) separately.

If m = 0 in (3.12), then we have f(t0) 6= 0. Consider (3.11) as a homogeneous

system of linear algebraic equations A0x0 = 0 with x0 = (g(t0), g(t1), . . . , g(tn−1))
T .

The determinant of the matrix A0 (being a triangular matrix) is equal to

n−1∏
k=0

ωkf̂k+1,k+1 = [f(t0)]
n

n−1∏
k=0

ωk,

where we have used (3.4). Hence the determinant of A0 is different from zero by the

assumption f(t0) 6= 0. Therefore A0 is invertible and the equation A0x0 = 0 implies

x0 = 0, i.e., g(t0) = g(t1) = . . . = g(tn−1) = 0. Since n ∈ N is arbitrary, we get that g

is identically zero on {tn : n ∈ N0}.

If m = 1 in (3.12), then we have

(3.13) f(t0) = 0 and f(t1) 6= 0.

In this case, (3.4) implies that

(3.14) f̂n,n = 0 for all n ∈ N0,

and the system (3.11) becomes

(3.15)



ω0f̂2,1g(t0) = 0,

ω0f̂3,1g(t0) + ω1f̂3,2g(t1) = 0,

ω0f̂4,1g(t0) + ω1f̂4,2g(t1) + ω2f̂4,3g(t2) = 0,
...

ω0f̂n,1g(t0) + ω1f̂n,2g(t1) + . . . + ωn−2f̂n,n−1g(tn−2) = 0.
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Next, since f(t0) = 0, we have from (3.5) that

f̂n+1,n =
ωn

ωn−1

f̂n,n−1, n ∈ N1.

Iterating this equation and taking into account (3.3), we find

(3.16) f̂n+1,n =
ωn

ω0

f̂1,0 =
ωn

ω0

f(t1), n ∈ N0.

Considering the system (3.15) as before as a system A1x1 = 0, the determinant of A1

is found to be equal to

n−2∏
k=0

ωkf̂k+2,k+1 = [f(t1)]
n−1

n−2∏
k=0

ωk+1

ω0

and hence is different from zero by (3.13). Therefore x1 = 0, i.e., g(t0) = g(t1) =

. . . = g(tn−2) = 0, and since n ∈ N is arbitrary, we get that g is identically zero on

{tn : n ∈ N0}.

If m = 2 in (3.12), then we have

(3.17) f(t0) = f(t1) = 0 and f(t2) 6= 0.

In this case, (3.14) and (3.16) still hold. Besides, by f(t1) = 0, equation (3.16) yields

(3.18) f̂n+1,n = 0 for all n ∈ N0.

Therefore the system (3.11) becomes

(3.19)



ω0f̂3,1g(t0) = 0,

ω0f̂4,1g(t0) + ω1f̂4,2g(t1) = 0,

ω0f̂5,1g(t0) + ω1f̂5,2g(t1) + ω2f̂5,3g(t2) = 0,
...

ω0f̂n,1g(t0) + ω1f̂n,2g(t1) + . . . + ωn−3f̂n,n−2g(tn−3) = 0.

Next, since f̂n,n−1 = 0 for n ∈ N1 by (3.18), we have from (3.7) that

f̂n+1,n−1 =
ωn

ωn−2

f̂n,n−2, n ∈ N2.

Iterating the last equation, we find

f̂n+1,n−1 =
ωnωn−1

ω1ω0

f̂2,0 =
ωnωn−1

ω1ω0

f(t2), n ∈ N1.

Writing the system (3.19) again as A2x2 = 0, the determinant of A2 is equal to

n−3∏
k=0

ωkf̂k+3,k+1 = [f(t2)]
n−2

n−3∏
k=0

ωk+2ωk+1

ω1ω0

and hence is different from zero by (3.17). Then x2 = 0, i.e., g(t0) = g(t1) =

. . . = g(tn−3) = 0, and since n ∈ N is arbitrary, we get that g is identically zero on

{tn : n ∈ N0}.
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We see that one can discuss the system Amxm = 0 and argue in this way for any

value of m ∈ N0 in (3.12) in order to obtain that g(tn) = 0 for all n ∈ N0.

Remark 3.4. Note that in the special case tn = hn, n ∈ N0, where h > 0 is a fixed

real number, for any two functions f, g : {tn : n ∈ N0} → C their convolution f ∗ g

has the form (see [2])

(f ∗ g)(nh) = h

n−1∑
k=0

f(nh− kh− h)g(kh) for n ∈ N0,

and therefore equations (3.11) in the proof of Theorem 3.3 take in this case the form

f(0)g(0) = 0,

f(h)g(0) + f(0)g(h) = 0,

f(2h)g(0) + f(h)g(h) + f(0)g(2h) = 0,
...

f((n− 1)h)g(0) + f((n− 2)h)g(h) + . . . + f(0)g((n− 1)h) = 0,

which is much easier for illustrating the reasoning made in the proof of Theorem 3.3.

Theorem 3.5 (Convolution Theorem). Assume (2.1) and let f, g : {tn : n ∈ N0} → C
be two functions such that L{f}(z), L{g}(z), and L{f ∗ g}(z) exist for a given z ∈ C
satisfying (2.3). Then, at the point z,

(3.20) L{f ∗ g}(z) = L{f}(z) · L{g}(z).

Proof. For brevity let us set

en,m(z) := ez(tn, tm) and f̂n,m := f̂(tn, tm).

Then (2.4) gives

en,n(z) = 1 for all n ∈ N0(3.21)

en+1,m(z) = (1 + ωnz)en,m(z) for all n, m ∈ N0 with n ≥ m(3.22)

en,m+1(z) =
en,m(z)

1 + ωmz
for all n, m ∈ N0 with n ≥ m + 1,(3.23)

and the shifting problem (3.1) can be rewritten as (3.2), (3.3). Using definition (2.5)

of the Laplace transform and Definition 3.2 for the convolution, we have

L{f ∗ g}(z) =
∞∑

n=1

ωn(f ∗ g)(tn)

en+1,0(z)
=

∞∑
n=1

ωn

en+1,0(z)

n−1∑
k=0

ωkf̂n,k+1g(tk)

=
∞∑

k=0

ωkg(tk)
∞∑

n=k+1

ωnf̂n,k+1

en+1,0(z)
.

Substituting here

en+1,0(z) = en+1,k+1(z)ek+1,0(z),
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we get

L{f ∗ g}(z) =
∞∑

k=0

ωkg(tk)

ek+1,0(z)

∞∑
n=k+1

ωnf̂n,k+1

en+1,k+1(z)

= L{g}(z)
∞∑

n=k+1

ωnf̂n,k+1

en+1,k+1(z)
.(3.24)

Let us set

(3.25) Ψm =
∞∑

n=m

ωnf̂n,m

en+1,m(z)
, m ∈ N0.

We will show that Ψm is independent of m ∈ N0, which then implies
∞∑

n=k+1

ωnf̂n,k+1

en+1,k+1(z)
=

∞∑
n=0

ωnf̂n,0

en+1,0(z)
=

∞∑
n=0

ωnf(tn)

en+1,0(z)
= L{f}(z),

and thus yields (3.20) by using (3.24). So, it remains to show that the quantity Ψm

defined by (3.25) does not depend on m ∈ N0. We have, putting en,m := en,m(z) and

using (3.2) and (3.21), (3.22), and (3.23),

Ψm+1 =
∞∑

n=m+1

ωnf̂n,m+1

en+1,m+1

=
∞∑

n=m+1

ωnf̂n,m + ωmf̂n,m+1 − ωmf̂n+1,m+1

en+1,m+1

=
∞∑

n=m+1

ωnf̂n,m

en+1,m+1

− ωm

∞∑
n=m+1

[
f̂n+1,m+1

en+1,m+1

− f̂n,m+1

en,m+1

+
f̂n,m+1

en,m+1

− f̂n,m+1

en+1,m+1

]

=
∞∑

n=m+1

ωnf̂n,m

en+1,m

(1 + ωmz) + ωm
f̂m+1,m+1

em+1,m+1

− ωm

∞∑
n=m+1

f̂n,m+1

en+1,m+1

ωnz

= (1 + ωmz)Ψm − ωm
f̂m,m

em+1,m

(1 + ωmz) + ωmf̂m+1,m+1 − ωmzΨm+1

= (1 + ωmz)Ψm − ωmf̂m,m + ωmf̂m+1,m+1 − ωmzΨm+1

= (1 + ωmz)Ψm − ωmzΨm+1,

where we have used the fact that f̂n,n = f(t0) for all n ∈ N0. Consequently

(1 + ωmz)Ψm+1 = (1 + ωmz)Ψm,

and hence Ψm+1 = Ψm as 1 + ωmz 6= 0 under condition (2.3).

4. THE INVERSE LAPLACE TRANSFORM

In this section we establish an inversion formula for the Laplace transform.

Theorem 4.1 (Uniqueness Theorem). Assume (2.2) and let x : {tn : n ∈ N0} → C
be a function in the space Fδ, i.e., x satisfies (2.15). Further, let x̃(z) be the Laplace

transform of x defined by (2.5) for z ∈ Dδ. If x̃(z) ≡ 0 for z ∈ Dδ, then x(tn) = 0

for all n ∈ N0.
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Proof. By the assumption, we have

(4.1)
ω0x(t0)

1 + ω0z
+

ω1x(t1)

(1 + ω0z)(1 + ω1z)
+

ω2x(t2)

(1 + ω0z)(1 + ω1z)(1 + ω2z)
+ . . . ≡ 0

for z ∈ Dδ. Multiplying (4.1) by 1 + ω0z and then passing to the limit as |z| → ∞
(we can take a term-by-term limit due to the uniform convergence proved in Theorem

2.5), we get x(t0) = 0. Now we multiply the remaining equation (use x(t0) = 0 in

(4.1))
ω1x(t1)

(1 + ω0z)(1 + ω1z)
+

ω2x(t2)

(1 + ω0z)(1 + ω1z)(1 + ω2z)
+ . . . ≡ 0

by (1 + ω0z)(1 + ω1z) and pass then to the limit as |z| → ∞ to obtain x(t1) = 0.

Repeating this procedure, we find that x(t0) = x(t1) = x(t2) = . . . = 0.

Theorem 4.1 implies that the inverse Laplace transform exists. The following

theorem gives an integral formula for the inverse Laplace transform.

Theorem 4.2 (Inverse Laplace Transform). Assume (2.2), let x ∈ Fδ, and let x̃(z)

be its Laplace transform defined by (2.5). Then

(4.2) x(tn) =
1

2πi

∫
Γ

x̃(z)
n−1∏
k=0

(1 + ωkz)dz for n ∈ N0,

where Γ is any positively oriented closed curve in the region Dδ that encloses all the

points αk = −ω−1
k for k ∈ N0.

Proof. Integrating the equality

(4.3) x̃(z) =
ω0x(t0)

1 + ω0z
+

ω1x(t1)

(1 + ω0z)(1 + ω1z)
+

ω2x(t2)

(1 + ω0z)(1 + ω1z)(1 + ω2z)
+ . . .

over the curve Γ with respect to z and noting that we can integrate term-by-term by

the uniform convergence of the series proved in Theorem 2.5, we get∫
Γ

x̃(z)dz = ω0x(t0)

∫
Γ

dz

1 + ω0z
+ ω1x(t1)

∫
Γ

dz

(1 + ω0z)(1 + ω1z)
+ . . . .

Next, ∫
Γ

dz

1 + ω0z
=

1

ω0

∫
Γ

dz

z − α0

=
2πi

ω0

and ∫
Γ

dz
n−1∏
k=0

(1 + ωkz)

= 0 for all n ∈ N \ {1}

because if P (z) is any polynomial of degree greater than or equal to two and if Γ is

any closed contour that encloses all the roots of the polynomial P (z), then∫
Γ

dz

P (z)
= 0.
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Therefore we find

x(t0) =
1

2πi

∫
Γ

x̃(z)dz.

Now multiplying (4.3) by 1 + ω0z and then integrating over Γ with respect to z, we

obtain∫
Γ

(1 + ω0z)x̃(z)dz = ω0x(t0)

∫
Γ

dz + ω1x(t1)

∫
Γ

dz

1 + ω1z

+ ω2x(t2)

∫
Γ

dz

(1 + ω1z)(1 + ω2z)
+ . . . .

Next, ∫
Γ

dz = 0,

∫
Γ

dz

1 + ω1z
=

1

ω1

∫
Γ

dz

z − α1

=
2πi

ω1

and ∫
Γ

dz
n∏

k=1

(1 + ωkz)

= 0 for all n ∈ N \ {1}.

Therefore we find

x(t1) =
1

2πi

∫
Γ

x̃(z)(1 + ω0z)dz.

Repeating this procedure, we can obtain formula (4.2) for an arbitrary n ∈ N0.

5. EXAMPLES

Example 5.1. Let tn = hn, n ∈ N0, where h > 0 is a fixed real number. In this case

ωn = tn+1 − tn = (n + 1)h− nh = h for all n ∈ N0.

Note that (2.2) holds with ω = h. For a function x : {hn : n ∈ N0} → R, its Laplace

transform (2.5) becomes

x̃(z) = L{x}(z) = h

∞∑
n=0

x(nh)

(1 + hz)n+1
.

The inversion formula (4.2) takes the form

x(nh) =
1

2πi

∫
Γ

x̃(z)(1 + hz)ndz, n ∈ N0,

where Γ is a positively oriented curve that encloses the point −1/h.

Example 5.2. Let tn = qn, n ∈ N0, where q > 1 is a fixed real number. Then we

have

ωn = tn+1− tn = qn+1− qn = (q− 1)qn = q′qn for all n ∈ N0, where q′ = q− 1.
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Note that (2.2) holds with ω = q′. For a function x : {qn : n ∈ N0} → R, its Laplace

transform (2.5) becomes

x̃(z) = L{x}(z) = q′
∞∑

n=0

qnx(qn)
n∏

k=0

(1 + q′qkz)

.

The inversion formula (4.2) takes the form

x(qn) =
1

2πi

∫
Γ

x̃(z)
n−1∏
k=0

(1 + q′qkz)dz, n ∈ N0,

where Γ is a positively oriented curve that encloses all the points −(q′qk)−1 with

k ∈ N0.

Example 5.3. Let tn = np, n ∈ N0, where p is a positive real number. Then we have

ωn = tn+1 − tn = (n + 1)p − np for all n ∈ N0.

Next, applying the mean value theorem to the function f(x) = xp on the interval

[n, n + 1], we obtain

(n + 1)p − np = f(n + 1)− f(n) = f ′(c) = pcp−1, where n < c < n + 1.

Therefore, taking into account that the function xp−1 is nondecreasing on [0,∞) if

p ≥ 1 and decreasing on (0,∞) if p < 1, we get

pnp−1 ≤ ωn ≤ p(n + 1)p−1 if p ≥ 1

and

p(n + 1)p−1 < ωn < pnp−1 if p < 1.

Hence, we see that condition (2.1) holds for all p > 0, while condition (2.2) holds if

and only if p ≥ 1.
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cations. Birkhäuser, Boston, 2001.

[4] M. Bohner and A. Peterson. Laplace transform and Z-transform: Unification and extension.
Methods Appl. Anal., 9(1):151–157, 2002. Preprint in Ulmer Seminare 6.

[5] M. Bohner and A. Peterson. Advances in Dynamic Equations on Time Scales. Birkhäuser,
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