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ABSTRACT. Starting with a general definition of the Laplace transform on arbitrary time scales,
we specify the Laplace transform on isolated time scales, prove several properties of the Laplace
transform in this case, and establish a formula for the inverse Laplace transform. The concept of
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1. INTRODUCTION

A time scale is an arbitrary nonempty closed subset of the real numbers. Time
scales analysis unifies and extends continuous and discrete analysis, see [3,5]. The
Laplace transform on time scales was introduced by Hilger in [6], but in a form that
tries to unify the (continuous) Laplace transform and the (discrete) Z-transform.
For arbitrary time scales, the Laplace transform was introduced and investigated by
Bohner and Peterson in [4] (see also [3, Section 3.10]). It was further developed by
the authors in [1,2].

Let T be a time scale with the forward jump operator ¢ and the delta differenti-
ation operator A. Let u(t) = o(t) —t for t € T (the so-called graininess of the time

scale). A function p : T — C is called regressive if
1+ u(t)p(t) #0 forall teT.

The set of all regressive and rd-continuous functions p : T — C will be denoted by

R. Suppose p € R and fix s € T. Then the initial value problem

(1.1) y2(t) = p()y(t), y(s) =1

has a unique solution on T. This solution is called the exponential function and is
denoted by e,(t, s).
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Assume that sup T = oo and fix ty € T. Below we assume that z is a complex
constant which is regressive, i.e., 1+ u(t)z # 0 for all ¢t € T. Therefore e,(+,tg) is well
defined on T. Suppose z : [tg, 00)r — C is a locally A-integrable function, i.e., it is
A-integrable over each compact subinterval of [ty, 00)r. Then the Laplace transform
of x is defined by

(1.2) L{z}(z) = /too %At for ze D{z},

where D{z} consists of all complex numbers z € R for which the improper integral

exists.

The following two concepts are introduced and investigated by the authors in [1].
For a function f : [ty,00)r — C, its shift (or delay) ]/”\(t, s) is defined as the solution
of the problem

FAe(t o(s) = —f2(t,s), t,se€T, t>s>t,

(1.3) Fltto) = f(t), tET, t>t.

For given functions f, g : [to,00)r — C, their convolution f * g is defined by
(1.4) (f*xg)(t /fta (s)As, teT, t=>t.

This paper is organized as follows. In Section 2, we specify and investigate the
above concept of Laplace transform for time scales which have graininess that is
bounded below by a strictly positive number. These are special cases of so-called
isolated time scales. The concept of time scales is actually not needed there and in
the remainder of this paper, since all statements and proofs are given directly without
referring to this theory. Only this present Section 1 contains time scales concepts and
hence shows the origin of this development. However, for a reader to follow the rest
of this paper, it is not necessary to be familiar with time scales theory. In Section
3, we present the convolution theorem and a discrete analogue of a classical theorem
of Titchmarsh, while Section 4 features a formula for the calculation of the inverse
Laplace transform. Finally, in Section 5, we discuss several examples of time scales
for which our theory applies, e.g., (see [7,8]) hZ with h > 0, ¢"° with ¢ > 1, and N}
with p > 1.

2. THE LAPLACE TRANSFORM

Throughout we let ¢,, be real numbers for all n € Ny such that

(2.1) lim ¢, =00 and w,:=t,;1 —1t, >0 for all n € Ny,
while we assume in the main results of this paper that

(2.2) limt, =00 and w:= 1n£ wy, >0, where w, :=t,41 —t, forneN
n—oo nelNg



THE LAPLACE TRANSFORM ON ISOLATED TIME SCALES 3
holds. Note that, for example, the numbers
t,=hn, neNy and t,=q", n € Ny,
where h > 0 and ¢ > 1, respectively, satisfy our assumption (2.2), while the numbers
th=vn, neNy and t,=Inn, neN

do not satisfy our assumption (2.2).

Let z be a complex number such that

1
(2.3) z# —— forall neN,.

n

Then the solution e,(t,, t,,) of the (see (1.1)) problem

y(thrl) (1 + wp? )y(tn) y(tm) =1, m,neNy

satisfies
n—1
(2.4) er(tn, tm) = H (I+wpz) if n>m
k=m
and .
e, (tn,tm) = —— if n<m,
H (1 + wkz)
k=n

where the products for m = n are understood, as usual, to be 1. Thus, in conformance

with (1.2), we make the following definition.

Definition 2.1. Assume (2.1). If z : {t, : n € Ny} — C is a function, then its
Laplace transform is defined by

(2.5) 7(2) = L{a)(z) = 3 i)
n=0 H 1 +wkz

for those values z € C satisfying (2.3) for which this series converges.

Let us recall our assumptions (2.2) and (2.3). Define

n

(2.6) Pu(z) = [J(1 +w2), n €N,

k=0

which is a polynomial in z of degree n + 1. It is easily verified that

(2.7) Py(z2) = Po1(2) = zw, Po1(2), neN
and

1 1
(2.8) — = n € Ny

hold, where P_;(z) = 1.
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The numbers a,, = —w, , n € Ny, belong to the real axis interval [-w™!,0). For
any 0 > 0 and n € Ny, we set

(2.9) D(;::(C\UDE, where Df:={2€C: |z—a,| <0}, neN,

n=0
so that Dy is a closed domain of the complex plane C, and the points of Dy are in
distance not less than ¢ from the set {«, : n € Ng}.

Lemma 2.2. Assume (2.2), (2.3), (2.6), and (2.9). For any z € Ds, we have

(2.10) |Po(2)| > (0w)™™  and |Pu(2)| > 6(6w)"w, for all n € Ny.
Moreover,
(2.11) lim P,(2) =00 forall z€ Ds provided §>w™".

Proof. For any z € Ds and n € Ny, we have

n

Pa(2)] = |[JQ+we2)| = |[J(wr(z — )
= wy <1:[wk> H[z—ak]>
> W = §(dw)"w

Thus the proof of the second statement in (2.10) is complete. The first statement in
(2.10) follows from the second statement in (2.10), and (2.11) follows from (2.10). O

Example 2.3. Let us show that

LN =2 and Lfeal t0)}(2) =

We have for z € Dg, with § > w™!, using (2.5), (2.6), (2.8), and (2.11),
1

1

z—a

L{1}(z) = :0 pjfz) - %:0 {Pn_ll(z) Fr(2)
= EJL‘%@ [1_Pm1(2)} - %

Now we find the Laplace transform of the function e,(t) = e,(t,to), for which we
have by (2.4) and (2.6),

n—1
Caltn) = [[(1 +wre) = Paca(@) for n € No.
It follows that

a(z) = L{ea}(z) = ZM _

o0

wnPr—1(a)

n=0 Pn (Z)
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0o n—11+w1€a ) n_IOé—Oék
(2.12) Z1+wn H1+Wk2 Zl+wn kli[()z—ak.

n=0 =0 n=0

Since the numbers ay, k € Ny, are contained in the finite interval [—w™!,0), there is

a sufficiently large number Ry > 0 such that

a — O

(2.13)

1
< 5 for all |z] > Ry and k€ Ny.

zZ — O
Therefore the series (2.12) converges for |z| > Ry, because
1 1

< —

:|z—ozn] — 0

Wy
14w,z

is bounded. Next, we can write, using (2.8),

() = anPn_l(a) _ @ +anPn_1(a)

Po(z) —
W 1 (14 wp1a) Py_o(a) )
O ; Por(2) Po(2) }

1
Po(Z> Pn—l(z) Pn<2) — Pn_l(Z)
wo 1 1 . Pm_l(Oé) o
= — 2 g
Py(z)  zPy(z) =z e P, (2) T2 l?)
1 o
= ; + ;ea(z),
where we have used the fact that
Pm 1(0&)
1 —
Ay
because of
Prni(a) 1 nﬁ a— o
Pn(z)  14+wnz piriE Aol
and (2.13). Thus we have obtained the equality
~ 1 o
€a(z) = 2 + ;ea(z).
Hence
~< ) 1
en(2) = )
Z—«

Theorem 2.4. Assume (2.2). If the function x : {t, : n € No} — C satisfies the

condition

(2.14) |z(t,)] < CR"™ for all n € Ny,
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where C' and R are some positive constants, then the series in (2.5) converges uni-
formly with respect to z in the region Ds with § > Rw™' and therefore its sum T(z)

is an analytic (holomorphic) function in Ds.

Proof. By Lemma 2.2 and (2.14), for the general term of the series in (2.5), we have
the estimate

wnz(ty,) w,CR" C (R\"
=—|— fi d Ds.
P,(2) | ~ d(0w)"w, O (5w) or n€No and z€D;
The series
> (&)
— ow
converges if 6 > Rw™!. This completes the proof. n

A large class of functions for which the Laplace transform exists is the class Fs

of functions x : {t, : n € Ny} — C satisfying the condition

(e o]

(2.15) D (0w) Ma(tn)| < oo

n=0

Theorem 2.5. Assume (2.2). For any x € Fs, the series in (2.5) converges uniformly

with respect to z in the region Ds, and therefore its sum T(z) is an analytic function
m D(g.

Proof. The proof follows from the second inequality in (2.10) and from (2.15). [

Theorem 2.6. Assume (2.2). Let x: {t, : n € Ng} — C be a function and define a
new function x® : {t, :n € Ng} — C by

tn + wy) — z(ty,) |

eA(t,) = 2 ¥

Suppose that x € Fs. Then x> € Fj, too, and

(2.16) L{z™Y(2) = 2T(2) — z(to).

Moreover, defining x2% = (x2)2, we have that x*> € Fs5 and that
(2.17) L{z?2}(2) = 2%2(2) — za(ty) — 22 (to).

Proof. We have

[e.9] o0

Z((sw)_n|mA(tn)| = Z(5w)—n|$(tn+1) — a(ty,)|

< wt Z(5w)_" [z (tns1)] + |2(ts)]]

= 63 (00) " )| + w3 () ()] < oo
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and therefore 22 € Fs5. Next, using the definition (2.5) of the Laplace transform, we
find

 wal” T 1) — x(ty
L{x*}(z) = Zn—(tn) -y (tny1) — z(tn)

~ Pu(2) — Py(z)
- S - Srg - S0
- NI SRS LR
e ey

_(reoz)rlto) gy ) + 23(2)

so that (2.16) holds. The formula (2.17) is obtained by applying (2.16) to z2. O

Theorem 2.7 (Initial Value and Final Value Theorem). Assume (2.2). We have:

(a) If x € Fs for some 6 > 0, then

(2.18) z(ty) = lim {z7(2)}.

zZ—00

(b) If x € Fs for all § > 0, then

(2.19) lim z(t,) = im{z7(2)}.

n—oo z—0

Proof. Assume x € F;s for some 6 > 0. It follows from (2.5) that

() = wox(to) wiz(ty) wor(ts)
l4+wiz (I4wez)(l+wiz) (14 wez)(l+wiz)(l+wz)
and
(1+ w0 ) (2) = worlto) + ffg) = w‘*’fﬁl —
Hence

lim z(z) =0 and Zli_)rgo{(l + wo2)Z(2)} = wox(toy),

which yield (2.18). To show (2.19), assume x € Fj for all 6 > 0. In the proof of

Theorem 2.6 we have obtained the formula

3 “”(t“}gi(;)"”(t") — 23(2) — 2(to).

Hence, using Lemma 2.2 and taking into account that

lim P,(z) =1 forany n € Ny,

z—0

it is not difficult to arrive at (2.19). O



8 MARTIN BOHNER AND GUSEIN SH. GUSEINOV

3. THE CONVOLUTION

In this section we only assume (2.1). For a given function f : {¢, : n € Ng} — C,

we consider the shifting problem (see (1.3))

o | Fltnsrtnsn) = b i) | w0 | b tnsn) = Fltastn) | =0,
(3.1) m,n € Ng, n >m,

f(tﬂnt()) = f(tn>, n e No.
Theorem 3.1. Assume (2.1). For an arbitrary function f : {t, :n € No} — C, the

shifting problem (3.1) has a unique solution.

Proof. Setting f(tn,tm) = ]/‘;m for brevity, we rewrite the shifting problem (3.1) in

the form
(3'2) Wm (ﬁ@—i—l,m—i-l - J/C;L,m+1> + W (ﬁum—&-l - ﬁz,m) =0, mmneNy, n>m,
(33) fn,O = f(tn), n < No,
where ﬁhm defined for m,n € Ny with m < n is a desired solution. Note that for
m = n in (3.2) there arises the term ﬁmH in which the second index is greater than
the first one, but this term arises in (3.2) in two places with the same coefficient
and opposite signs and therefore this term cancels. Assume that ﬁl,m is a solution of
problem (3.2), (3.3). Putting in (3.2) m = n, we get

ﬁ’L—‘rl,TL—‘—l = -]?TLJL forall n c No.
Therefore ﬁm is constant for n € Ny, and since J?o,o = f(to) by (3.3), we obtain
(3.4) Fan = f(to) forall neN.

Consequently, it is enough to show that equation (3.2) has a unique solution satisfying
conditions (3.3) and (3.4). We will do this by showing that equation (3.2) can be
solved recurrently under the conditions (3.3) and (3.4). For any i € Ny, let us set
N; = [i,00) N Ny. Putting m =n — 1 with n € Nj in (3.2), we get

Wn—1 (ﬁl-‘an - .ﬁz,n) + wp <ﬁw,n - ﬁm,n—l) = O, ne I\]1-

Hence, taking into account (3.4), we get

(3.5) Fosin = (1 S ) f(to) +

Wn

fn,n—l; neNla

Wn—1 Wn—1

and besides, by (3.3),
(3.6) Fro = f(t).

Using the initial condition (3.6), we find ﬁwl,n from (3.5) recursively in a unique way
for all n € Ny. Next, we put m = n — 2 with n € Ny in (3.2) to get

Wn—2 <ﬁz+1,n—1 — ﬁz,n—l) + wy (.}/c;z,n—l — ﬁl,n—Q) =0, ne&N,.
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Hence
~ Wn, ~ Wy -~
(37) fn—i—l,n—l = (1 - ) fn,n—l + fn,n—?a n e N27
Wn—2 Wn—2
and besides, by (3.3),
(3.8) fao = f(t2).

In equation (3.7) the term ﬁm,l is known for all n € N; from the first step. Therefore,
using the initial value (3.8), we can find ﬁz—l—l,n—l from (3.7) recursively in a unique

way for all n € Ny. Repeating this procedure, we put m = n — i for n € N; in (3.2)

to get
Wn—i (ﬁl+1,n7i+1 — ﬁz,nfz#l) + wnp <f/;z,n7i+1 — ﬁmﬂ) =0, neN,.
Hence
(3.9) ﬁl—&-lm—i-ﬁ-l = (1 _ ) ﬁm—iﬂ + ﬂﬁm,n—ia n € N,
Wi Whi

and besides, by (3.3),
(3.10) fio = f(t:).

In equation (3.9) the term ]?WH-H is known for all n € N;_; from the previous step.
Therefore, using the initial value (3.10), we can find ﬁlﬂm_i“ from (3.9) recursively
in a unique way for all n € N;_;. Since ¢« € N can be taken arbitrarily, we see that

]?n,m is constructed in this way uniquely for all m,n € Ny with m < n. Il

We now introduce the following definition (see (1.4)) of the convolution of two

functions.

Definition 3.2. Assume (2.1), let f,g: {t, : n € No} — C be two functions, and let
]?be the solution of the shifting problem (3.1). Then the convolution f % g of f and
g is defined by (f * g)(to) = 0 and

n—1

(f *9)(tn) = > wif (tu, tir1)g(tr),  n € No.
k=0
The following theorem is a discrete analogue of the classical theorem of Titch-

marsh [9,10] for the usual continuous convolution.

Theorem 3.3. Assume (2.1) and let f,g : {t, : n € No} — C be two functions. If
f * g is identically equal to zero on {t, : n € No}, then at least one of the functions

f and g is identically equal to zero on {t, : n € Ny}.



10 MARTIN BOHNER AND GUSEIN SH. GUSEINOV

Proof. Assume that f * g is identically zero on {t,, : n € Ny}. Then we have for any

-~

n € Np, by Definition 3.2 of the convolution and the notation f(t,,tm) = fam,

;

wﬂﬁ,lg<t0) = Oa
wo]?z,lg(to) + WlfQQQ(tl) =0,
(3.11) . woﬁ;,lg(to) + w1J?3,2g(t1) + W2J?3,39(t2) =0,

\woﬁug(to) + w1J?n,29(t1) +...+ wn—lﬁl,ng(tn—l) =0,

where we can take n € N as large as we wish. It is sufficient to show that if f is not
identically zero on {t,, : n € Ny}, then g is identically zero on {¢, : n € Ny}. Thus
assume that f is not identically zero on {t, : n € Ng}. Let f(¢,,) with an m € Ny be
the first of the values of f(to), f(t1),... that is different from zero. Hence

(3.12) f(to) =...= f(tm—1) =0 and f(t,) #0.
We have to show that then g¢(t,) = 0 for all n € Ny. Let us consider the possible
values of m € Ny in (3.12) separately.

If m =0 in (3.12), then we have f(ty) # 0. Consider (3.11) as a homogeneous
system of linear algebraic equations Agzg = 0 with zg = (g(t0), g(t1), ..., g(tn_1))".

The determinant of the matrix Ay (being a triangular matrix) is equal to

n—1 n—1
H Wi frt1 o1 = [f(to)]" H Wk
k=0 k=0

where we have used (3.4). Hence the determinant of Ay is different from zero by the
assumption f(tg) # 0. Therefore Ay is invertible and the equation Agze = 0 implies
xo =0, ie., g(to) = g(t1) = ... = g(tn—1) = 0. Since n € N is arbitrary, we get that g
is identically zero on {t, : n € Ng}.

If m =11in (3.12), then we have
(3.13) f(to) =0 and f(t1) #0.
In this case, (3.4) implies that
(3.14) fnn =0 forall n e Ny,
and the system (3.11) becomes
(wofa1g(to) =0,

woﬁ,lg(to) + wl]?sgg(tl) =0,
(3.15) S wo,}?zl,lg(t()) + Wl]?zmg(tl) + W2fz,39(t2) =0,

\WOfn,lg(tO) + wlfn,2g(t1) 4+ ...+ Wn72fn,nflg(tn72) = O
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Next, since f(tp) = 0, we have from (3.5) that

Wy =
fn,n—h TLENI-

Wn—1

fn+1,n =
Iterating this equation and taking into account (3.3), we find
(3.16) Fosim = w—]?l,o = —f(t1), neN.

Considering the system (3.15) as before as a system A;z; = 0, the determinant of A,

is found to be equal to

n—2 n—2 w
H W frroprr = [f(E)]" ! H ==t
k=0 k=0 “0

and hence is different from zero by (3.13). Therefore x; = 0, i.e., g(to) = g(t1) =
.= g(th—2) = 0, and since n € N is arbitrary, we get that ¢ is identically zero on
{t, :n € No}.
If m =2 in (3.12), then we have
(3.17) flto) = f(t1) =0 and f(t2) # 0.
In this case, (3.14) and (3.16) still hold. Besides, by f(¢1) = 0, equation (3.16) yields
(3.18) ﬁbﬂm =0 forall neN,.

Therefore the system (3.11) becomes

W0f3 19(750)
w0f4 19(to) +W1f429( 1) =0,
(3.19) wof5 19(750) + w1f5 29(t1) + w2f5,39(752) =0,

(wofn19(to) +wifn2g(ti) + ...+ wnsfun—29(tn—s) = 0.

Next, since fn,n,l = 0 for n € Ny by (3.18), we have from (3.7) that

frtin—1 = n € Na.
Iterating the last equation, we find
~ WpWp—1 = WnWn—1
fotin-1 = ———fog = —"""—f(t2), n€N.
wWi1wWo w1y

Writing the system (3.19) again as Asxs = 0, the determinant of A, is equal to

n—3 n—3 w w
N _ k+2Wk+1
H Wi frapr1 = [f(t2)]" 2 H =
W1Wo
k=0 k=0

and hence is different from zero by (3.17). Then zo = 0, ie., g(ty) = g(t1) =
.= g(tn—3) = 0, and since n € N is arbitrary, we get that ¢ is identically zero on
{t, :n € No}.
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We see that one can discuss the system A,,z,, = 0 and argue in this way for any
value of m € Ny in (3.12) in order to obtain that ¢(t,) = 0 for all n € N,. O

Remark 3.4. Note that in the special case t, = hn, n € Ny, where h > 0 is a fixed
real number, for any two functions f,g : {t, : n € Ng} — C their convolution f * g
has the form (see [2])

n—1

(f % g)(nh) =1 f(nh—kh—h)g(kh) for n € Ny,

k=0

and therefore equations (3.11) in the proof of Theorem 3.3 take in this case the form
(1(0)9(0) =0,

f(h)g(0) + f(0)g(h) = 0,
f(2h)g(0) + f(h)g(h) + f(0)g(2h) =0,

Lf((n = 1)h)g(0) + f((n —2)h)g(h) + ...+ f(0)g((n — 1)h) = 0,
which is much easier for illustrating the reasoning made in the proof of Theorem 3.3.
Theorem 3.5 (Convolution Theorem). Assume (2.1) and let f, g : {t, :n € No} - C

be two functions such that L{f}(z), L{g}(2), and L{f *g}(z) exist for a given z € C
satisfying (2.3). Then, at the point z,

(3.20) L{f *g}(2) = L{f}(2) - £{g}(2).

Proof. For brevity let us set

~

enm(z) == e,(tn, t,) and f;m = ftn, tm).

Then (2.4) gives

(3.21) enn(z) =1 forall neN
(3.22) eni1m(2) = (L +wn2)enm(z) foral n,meNy with n>m
(3.23) €nm+1(2) Enm(Z) forall n,meNy with n>m+1,

- 1+w,z
and the shifting problem (3.1) can be rewritten as (3.2), (3.3). Using definition (2.5)

of the Laplace transform and Definition 3.2 for the convolution, we have

L{fxg}(z) = ZM = ZLiwkﬁz,k+lg(7§k)
k=0

1 €nt1,0(2) 1 €nt1,0(2) _
[e’s) [es) w

_ Zwkg(tk) Z ann,k—i—l'
k=0 n=k+1 ent1,0(2)

Substituting here

€n+1,0(2) = €n+1,k+1 (Z)€k+1,0(2)a
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we get

L)) = LM S
5.2 - Lo 3 PE]
Let us set R
(3.25) - T;%, m € Np.

We will show that W, is independent of m € Ny, which then implies

[e.9]

S bt 52 Gnfno 55 enflt) _ gy

St €n+1,k+1(z) -0 €n+1,0(2) — €n+1,0(2)

and thus yields (3.20) by using (3.24). So, it remains to show that the quantity W,
defined by (3.25) does not depend on m € Ny. We have, putting e, ,, := €, (%) and
using (3.2) and (3.21), (3.22), and (3.23),

0o 50 ~ ~ ~
N, o Z wnfn,m—l—l o Z ann,m + wmfn,m+1 - wmfn+1,m+1
m+1  — - -
e (&
n=m+1 n+1m+1 n=m+1 n+1m+1
00 ~
o 2 : wnfnm w z : fn+1 m+1 fn m~+1 fn m~+1 fn,m+1
= — W —
S €n+1,m+1 S €n+1,m+1 €n,m+1 en ;m+1 €n+1,m+1
00 00
wnfn,m fm+1,m+1 fn,m—f—l
= (14 wmz) + wp——"—— —wn W,z
(& (& (&
n=m+1 n+1m m+1,m+1 n=m+1 n+1,m—+1
Jm,m

= (1 + wmz)\pm — W, (1 + wmz) + wmfm+1 m+1 — wmijm+1

€m+1 m
= (1 + wmz)\llm - wmfm,m + Wmfm-i-l,m-i-l - wmz\ym—i—l

= (14 wn2)Vp — wnz¥i,
where we have used the fact that fnn = f(to) for all n € Ny. Consequently
(I +wnz)Vpme1 = (1 4+ wp2)V,,,

and hence U,, ;1 = ¥, as 1 + w,,,z # 0 under condition (2.3). O

4. THE INVERSE LAPLACE TRANSFORM
In this section we establish an inversion formula for the Laplace transform.

Theorem 4.1 (Uniqueness Theorem). Assume (2.2) and let x : {t, :n € Ny} — C
be a function in the space Fs, i.e., x satisfies (2.15). Further, let T(z) be the Laplace
transform of x defined by (2.5) for z € Ds. If (z) = 0 for z € Dy, then z(t,) = 0
for all n € Ny.



14 MARTIN BOHNER AND GUSEIN SH. GUSEINOV

Proof. By the assumption, we have

u)()l’(to) (Ull’(tl) wa(tQ)

=0
T+wiz (I4wz)(l4+wiz) (14 wez)(l+wiz)(l+ws2)

(4.1)

for z € Ds. Multiplying (4.1) by 1 4+ wpz and then passing to the limit as |z| — oo
(we can take a term-by-term limit due to the uniform convergence proved in Theorem
2.5), we get z(ty) = 0. Now we multiply the remaining equation (use z(ty) = 0 in
(4.1))
w1z(ty) N wox(ts)

(14+woz)(l+wiz)  (14+wez)(l+wiz)(l+wz)
by (1 + wpz)(1 + wy2) and pass then to the limit as |z| — oo to obtain z(t;) = 0.
Repeating this procedure, we find that x(ty) = x(t1) = z(t2) = ... = 0. O

.=0

Theorem 4.1 implies that the inverse Laplace transform exists. The following

theorem gives an integral formula for the inverse Laplace transform.

Theorem 4.2 (Inverse Laplace Transform). Assume (2.2), let x € Fs, and let T(z)
be its Laplace transform defined by (2.5). Then

(4.2) z(t,) = % / 5(2)ﬁ(1 +wz)dz  for n € Ny,
r k=0

where I' is any positively oriented closed curve in the region Dg that encloses all the
points ay = —w; * for k € Ny.
Proof. Integrating the equality

~\_ woz(to) w1z (ty) wax(ts)
(43) (=) = Il+wez (14+wz)(l4+wz) (14 wez)(l+wiz)(l+wez2)

over the curve I with respect to z and noting that we can integrate term-by-term by

the uniform convergence of the series proved in Theorem 2.5, we get

/F #(2)dz = woz(to) /F 1fi — +wr(h) /F (HWOZC;fHW) +

Next,
dz 1 dz 27
/1“1‘1‘@002_00_0 rz—ap  wo
and
/F—n1 dz =0 forall neN\{l}
H(l +wkz)
k=0

because if P(z) is any polynomial of degree greater than or equal to two and if I is

any closed contour that encloses all the roots of the polynomial P(z), then

/ Pd<i> -0
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w(to) = 11 / F(2)de.

Therefore we find

2mi
Now multiplying (4.3) by 1 4+ wpz and then integrating over I' with respect to z, we

obtain

/F(l—l—woz) (2 )dz_wox(to)ld2+w1x(tl)/ dz

F1—|—u)12

+w2x(t2)/ ( dz

_I._
r (1 4+ wi2)(1+ wez)

dz 1 dz 27l
dZ = O’ = — _
r rl4+wz w Jrz—o w1

/#:0 forall neN\{1}.
FH(1+WkZ)

k=1

Next,

and

Therefore we find

2(ty) = i,/rz(z)u +wp2)de.

27

Repeating this procedure, we can obtain formula (4.2) for an arbitrary n € No. [

5. EXAMPLES
Example 5.1. Let t,, = hn, n € Ny, where h > 0 is a fixed real number. In this case
Wp =tps1 —th =M+ 1)h—nh=~h forall neN.

Note that (2.2) holds with w = h. For a function = : {hn : n € Ny} — R, its Laplace

transform (2.5) becomes

)= L)) =3

The inversion formula (4.2) takes the form

1 -
z(nh) = %/Fm(z)(l + hz)"dz, n € Ny,
where T is a positively oriented curve that encloses the point —1/h.

Example 5.2. Let ¢, = ¢", n € Ny, where ¢ > 1 is a fixed real number. Then we

have

Wpn=tp1—ta=q"—¢"=(q—1)¢"=q¢'q" forall neNy, where ¢ =¢qg—1.
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Note that (2.2) holds with w = ¢’. For a function x : {¢" : n € Ng} — R, its Laplace

transform (2.5) becomes

i) =L{a}e) =d )
n=0 H (1+¢'¢*2)
k=0
The inversion formula (4.2) takes the form
. 1 N n—1 o
z(q") = — x(z)H(l +4'q"2)dz, n € Ny,
2mi T 5—0

where T' is a positively oriented curve that encloses all the points —(¢'¢*)~! with
k € Np.

Example 5.3. Let t,, = n?, n € Ny, where p is a positive real number. Then we have
Wp =tpy1 —tn =+ 1P —nP forall ne N

Next, applying the mean value theorem to the function f(z) = 2P on the interval

[n,n + 1], we obtain
(n+1)? —nP = f(n+1)— f(n) = f'(c) =p~", where n<c<n+l.

Therefore, taking into account that the function x?~! is nondecreasing on [0, 00) if

p > 1 and decreasing on (0, 00) if p < 1, we get
pnPt <w, <pn+1)Pt if p>1

and
pn+ 1Pt <w, <pnP' if p<1.

Hence, we see that condition (2.1) holds for all p > 0, while condition (2.2) holds if
and only if p > 1.
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