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1. Introduction

Difference equations arise naturally as discretised analogues of differential equations, and they also appear in their own
right, e.g., in the recurrence formulae for special functions and orthogonal polynomials. In spectral theory, difference oper-
ators are studied as models which avoid the inherent unboundedness of differential operators, the most prominent example
being Jacobi matrices, with three-term recurrence formulae as eigenvalue equations (cf. the detailed account in [2]).

Consider the symplectic difference system

Zks1 = SkZk, ke Z, (1])
where S, € C™" are symplectic matrices for k € Z, i.e.,
. 0 I
WJISk=J  with J:< )
-1, O

where I, denotes the n x n identity matrix.
Symplectic difference systems (1.1) cover a large variety of difference equations and systems, such as linear Hamiltonian
difference systems

{ Axyp = AiXpq + By,
Au = CiXpepr — Ay,

where By, C, € C™" are symmetric and I, — A, are nonsingular. In turn, systems (1.1) also cover higher-order Sturm-Liouville
difference equations

n . . .
> aY{p ) #yi s} =0 with p,(k) #0,
=0
in particular its special case, Sturm-Liouville second order difference equations

A(PkAxi) + X1 =0 with  py # 0.
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This paper is devoted to Weyl-Titchmarsh theory for linear symplectic difference systems
Ziir = Sk(A)z with Sp(2) =S, — 28, forke z, (1.2)

where / is a parameter. Here

Sf(Ak B") and 37<0 0)
k Ck Dk ¢ WkAk WkBk 7

where Ay, B, Ci, D, Wy € c™".

The paper is organized as follows. Some fundamental theory for symplectic difference systems is given in Section 2. For
symplectic difference systems we refer the reader to [1,3-6]. Weyl matrix disks are constructed and their properties are
studied in Section 3. These matrix disks are nested and converge to a limiting set of the matrix circle. The results are some
generalizations of Weyl-Titchmarsh theory for Hamiltonian difference systems [8,17]. The basic Weyl-Titchmarsh theory of
regular Hamiltonian systems can be found in [2], Weyl-Titchmarsh theory of singular Hamiltonian systems and their basic
spectral theory was developed by Hinton and Shaw and many others (cf. [7,9-15,19] and the references therein).

2. Preliminary results
Consider the symplectic system (1.2). Set

Xk .
Zk = ( ) with X, u, € R".
U

Then system (1.2) can be rewritten as

{ X1 = ArX + Brg,

R fork e 7. 2.1
U1 = Cixp — IWiXi1 + Dreiy, @1

In this section, we shall study the fundamental theory and properties of solutions for the system (1.2), i.e., (2.1).

Assumption 2.1. Throughout we assume that S; is symplectic, i.e.,
5 TISx=J forkez.

Assumption 2.2. We always assume that W is symmetric and nonnegative definite, i.e., W) > 0, and for any nontrivial

solution z;, = (ﬁ") of (2.1), we have
k

q
> X Wik > 0 for any p,q € Z with g > p.
k=p

Remark 2.1. S, is symplectic if and only if
ACy = CAr, B.Dy=D.By, ADy—CBi=1I,. (2.2)
From (2.2), it is easy to show that S;(/) is symplectic for all 2 € C, i.e,,
Su2)TSK(2) = 7.
Now we consider the existence of solutions for (1.2) or (2.1). From [1, Theorem 3.1] and noting that Si(4) is symplectic, we

have the following.

Lemma 2.1 (Existence and Uniqueness Theorem). For arbitrary initial data m € Z, ¢ € C?", the initial value problem of (1.2)
with z,, = & has a unique solution for all k € 7.

Now we consider the structure of solutions for the system (1.2), i.e., (2.1). For this purpose, we introduce the following
definitions, which are extracted from [1].

Definition 2.1. Let Uy, Vi and Uy, V, be pairs of n x m and n x p matrix-valued functions for k € Z. Then

Ue Ul _ ey, —via,
Ve ¥
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is called the Wronskian of (3”:) and (gk). If Uy, Vi is a solution of (2.1) such that

k
{ Uk Uk

=0 forkez
Ve Vk} orkecz,

then Uy, V} is said to be a prepared solution of (2.1) and <3"> is called a prepared matrix solution of (2.1).
k

If (g:‘) and (gk) (a < k< b+1)are 2n x n matrix-valued functions each of which is a prepared solutionona <k <b
k k

and the Wronskian of (3:‘) and ( ‘L~/j’<> is nonsingular, then (3:‘) and ( ‘L~/j’<> is called a fundamental solution set. The ma-
k k K k

trix-valued function (U" ‘L~/]’<

k

) is called a fundamental matrix for the system (2.1) defined for k € [a,b] N Z.
k

Lemma 2.2. If Uy, Vi and U, Vy (a<k<b+1) are n x n matrix-valued functions each of which is a prepared solution on
a < k < b, then the following conditions are equivalent:

Uk
Vi

Case (I). If (ﬁ") is a 2n x n solution, then there exist unique n x n matrices C; and C; such that
k

Xk) (Uk> U,
= Ci+ | 2¥|C, fora<k<b.
(Yk Vi ! Vk 2

The following lemma is an immediate corollary of [1, Corollary 3.3].

Case (I). The Wronskian of ( ) and (gk) is nonsingular.
k

Lemma 2.3. Let Zi(2) be 2n x n matrix-valued solutions of (2.1) for a < k < b. Then

Zy(WNTZk(2) = Z(A) JZa(2) forall a < k< b.

In the rest of the paper we use the following notation for the imaginary part of a complex number or matrix:

S -y M-M
Ji= 50 and JM = T
Now we consider the system (2.1) for a < k < b + 1 with the formally self-adjoint boundary conditions
0za =0, pzp.1 =0, (2.3)

where o and p are n x 2n matrices satisfying the self-adjoint conditions
rank « =n, oo =1, aJu* =0,
rank p=n, pp' =1, BIP =0.

Let 6,(2) and ¢y(4) be the 2n x n matrix-valued solutions of (2.1) satisfying
0.(2) =a* and ¢,(2) = Jo".

(24)

It is clear that a0,(1) =1, and apq(1) = 0. Set @ = (0 ¢). Then it is easy to see that &,(2) is the fundamental matrix for (2.1)
satisfying @,(1) = (o Jorr).
Lemma 2.4. Let Z,(/) be the fundamental matrix for (2.1) satisfying Z,(2) = (a* Jo*). Then

ZiWNIZk(A) = Zk()TZy(7) = g forall k € 7.

Proof. From Lemma 2.3,

o
oJ
Furthermore, —JZ;(7)JZk(%) = I for k € Z implies JZi(2)(—TZ,(4)) = Iy for k € 7. 1t follows that Z,(1)JZ () = J for

k € 7. This completes the proof. O
As usual, 1 is called an eigenvalue of (2.1) defined on [a,b + 1] N Z with (2.3) if a nontrivial solution z = (i) exists on

ZiWNIZk(2) = Z, (W TZa(2) = < *>j(oc* Jou)=g foralkez

[a,b+1]NnZ. Letz= (ﬁ) and z = (g) solve (2.1). Define (-,-) by

b
(Z, 2> = Z X;+1 Wki(kﬂ .

k=a
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Lemma 2.5. 1 is an eigenvalue of the problem (2.1) and (2.3) if and only if det(f¢y (1)) =0, and z,(2) is a corresponding
eigenfunction if and only if there exists a vector ¢ € C" such that zy(1) = ¢i(2)E for k € Z, where ¢ is a nonzero solution of the
equation Bop+1(2)E=0.

Proof. Let / be an eigenvalue of the eigenvalue problem (2.1) and (2.3) with corresponding eigenfunction z(1). Then there
exists a unique constant vector 17 € C*"\ {0} such that

Zk(2) = O(A)n forall k € Z.
Then, using (2.3) and (2.4),
0=0z,(4) =oPe(A)y=0a(a* Jo )= (I, 0)np=¢

¢
¢
nonzero solution of B¢p.+1(4)¢ = 0. Thus det(Bepp1(4)) =0.

Conversely, if /. satisfies det(B¢p+1(4)) = 0, then p¢p.1(2)E = 0 has a nonzero solution ¢&. Let z (1) = ¢p(4)E. Then pzpq(A) = 0.
Moreover, 0zq(1) = apy(L)¢ = aJo* = 0 by (2.4). Taking into account rank ¢,(1) = rank (Jo*) = n, we get that z,(/) is a
nontrivial solution of (2.1). This completes the proof. O

where 17 = ( ) with {, ¢ € C". Thus z(/) = ¢r(4)¢, and (2.3) implies Bpp+1 (1) = 0. Clearly, & # 0, since z(4) # 0. Hence ¢ is a

Lemma 2.6. Let z(1) = (X(;Z)) and z(v) = (Z((“))D be any n x p (p > 1) solutions of (2.1) corresponding to the parameters
A, v € C. Then

m-1
20 (V) TZn(2) —Z (M) T2() = (A=) Y Ky (Wi (2). (2.5)
k=1
In particular,

m-1
Z(A) TZm(2) = 2 (1) T21(2) = 2i52_ Xy () Wickis (). (2.6)
k=1

Proof. From [1, Theorem 3.2], we have

-1
2,(NT2n(2) =21 (V) T2(2) = Y _ [z (V)T Az (%)) — (TAZ(V)) Zks1 (7). (2.7)
1

Using (2.1) and (2.2) in (2.7), we conclude that (2.5) holds. O

3

=
I

Lemma 2.7. Under Assumption 2.2, all eigenvalues of (2.1) and (2.3) are real, and eigenvectors corresponding to different eigen-
values are orthogonal.

Proof. Let / be an eigenvalue of (2.1) and (2.3) with corresponding eigenfunction z,(2). Hence z,(4) satisfies (2.1) and
Yo(2) eKer a =Im Jo* and Yy, (1) € Ker f=Im Jp",

which follows from (2.4) and [16, Corollary 3.1.3]. Thus there exist ¢, ¢, € C" such that
Zo(A) = Ja'c; and zp,1(4) = Jp'cy.

Using (2.4) and (2.6), we have
b
2i32) Xy (IDWikics1 (2) = 24,1 (D) T 2541 (2) = 24(1) T2a(2) = BT TTB €2 — 6T JT "¢y =0,
k=a

so that 3/ = 0 and 2 € R by Assumption 2.2. Now let z(1) and z(v) be eigenfunctions corresponding to the eigenvalues 4 # v.
Then using Lemma 2.6 and proceeding as above, we have

b
(A—=v) ZXZH(V)WkaHW =25, 1(V)TZps1(A) = 25(v) T24(4) = 0.
k=a

Hence z(4) and z(v) are orthogonal. O



M. Bohner, S. Sun/Applied Mathematics and Computation 216 (2010) 2855-2864 2859
3. Weyl-Titchmarsh circles and disks

In this section, we consider the construction of Weyl-Titchmarsh disks and circles for symplectic systems (2.1).
Assume (2.4) and let «, 8 be defined as in Section 2. Suppose 1 € C\ R and set

I -
10.2) = (0 ) (g ). where My(b.2) = ~(fn.o() B ()

(observe Lemmas 2.5 and 2.7). For any n x n matrix M, define

E(M.b.7) = i sgn() Iy M)}, (5T 0our (1) 1)

and

I I
1) = (00 0D () 16D = (0D w0y )

It is clear that

EM.,b,7) = —i sgn(I4) )1 (AT A1 (A)-

Definition 3.1. Let 1 € C \ R. The sets
D(b,2)={M e C*" | £EM,b,2) <0} and K(b,1)={MeC"" | EWM,b,1) =0}

are called a Weyl disk and a Wey! circle, respectively.

Theorem 3.1. Let /. € C\ R. Then
K(b,2) = {Mg(b, 2) | p satisfies (2.4)}.

Proof. Let / € C\ R. Assume that f satisfies (2.4). Let 7 € C*". Then By+1(b, 1) = 0 so that (use again (2.4) and [16, Corollary
3.1.3])

Lo (b, 2)y € Ker f=1Im J°p,
and thus there exists ¢ € C" such that y, (b, 2)y = J*fc. Hence

N A1 (b, 2) T fpa (b, )0 = "B TTT " pc = ¢ p* T pc = 0

by (2.4). S0 ¥;.,(b, )T Ap.1 (b, 2) = 0, that is, E(M(b, 2),b, 1) = 0.
Conversely, if £(M, b, 1) = 0, then

() W\ o
0=l M) ()00 ) ) () =277
where
(4)
_ In M* b+1 )j
y ( <¢b+1 ))
Then rank y =n and yyp.1(4) = 0. Since

)-
=) () ) (j7) >0

we can define g = (yy*)” Zy Then p satisfies the self-adjoint conditions (2.4) and B(0p.1(2) ¢p.q(2)) ({&) = 0. It follows that
M = ~(Bpp(2)) " BOpe1(2) = My(b,2). O

Let
Oy.1(2)
¢2;+1 ())

Then F (b, 2) is a 2n x 2n Hermitian matrix and

F(b,7) = i sgn(m)( )y( Oir(2) bpr (). 3.1)

E(M.,b,7) = (I, M")F (b, 2) (11\/1) (3.2)



2860 M. Bohner, S. Sun/Applied Mathematics and Computation 216 (2010) 2855-2864

Denote

Then W, is nonnegative definite and

q —
Zx;HW,{ka >0 forallp,gez withqg>p
k=p

for any nontrivial solution z = (Z) of (2.1).

Lemma 3.1. For A€ C\ Rand b > a, we have

0 (2
F(b,2) = sgn(3I1) | —iT + 2: MZ( ki )>w,<(ek+] 2 o (x))} (3.3)
k=a ¢k+](;)
and
IM
Zml Wik (2) = |~.| EM, b, 2) + = (3.4)
Proof. From Lemma 2.6, we obtain
b 9(1 ())
Py ()T Pyi1(2) = @4 (4) T Pa(2) + 2134 Z ( o (}))m(e}c‘g () #h0))
k=a k+1
= *7"'21‘5’“2 < ka )> O 1&121(’1))7
k=a k+1 )
and so (3.3) follows from (3.1). From (3.2) and (3.3) we obtain
b (0L I
> i it = 3 (51 Pt o) ()
1 . . - I
= 2157] (In M")[F(b, 1) +1 sgn(34)J] (M)
1 . I, M1 3IM
:2|32| (InM)]:(b,?»)<M) +§7m5(M,b,),)+§. (3.5)

This completes the proof. O

Theorem 3.2. Let /. € C\ R. Then

D(by, 1) € D(by1,4) for any by, b, € Z with by < b,.

Proof. Let . € C\ R and b, < b,. Assume M € D(b,, 1). Then £(M, b,,2) < 0. By Lemma 3.1 and Assumption 2.2

b (0)1(2)
Flby,7) - Fbr, i) =234 Y ( bt )wk(ekﬂu) #h) =0,
k=by+1 (rbk+1 ()‘)

which implies that £(M, b,, 1) = £&(M, by, /). From this we have £(M,by,/) < 0. Thus M € D(by,4). O
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Now we study convergence of the disks. For this purpose, we denote

F(b,2) = ( . 1, 3.6
( ) Flz(bv)') Fzz(b., A) ( )
where F;(b, 2), Fi12(b,Z) and Fxy(b, 1) are n x n matrices.
Lemma 3.2. For 1 € C\ R, Fy1(b, %), Fax(b,2) are positive definite and nondecreasing in b.
Proof. From (3.3) and (3.6), we have
b
Fu(b.2) = 232 ) 0, )W(D0), (2),
k=a
b
Fa(b,2) = 234 Y ¢ (OO (4)-
k=a
Using Assumption 2.2 completes the proof. O
Using the notation of (3.6), we find that (3.2) can be rewritten as
EM,b, 1) = M"Fy,(b, )M + F13(b, )M + M*F}, (b, A) + F11(b, %)
= [M + F5; (b, 2)F;,(b, },)} Fy (b, 4) [M + Fy; (b, 2)F;,(b, i)] + Fy1(b, ) — Fia(b, 2)F5, (b, 2)F, (b, 4). (3.7)
Lemma 3.3. For 4 € C\ R, Fya(b, A)F5) (b, 2)F;5(b, 2) — F11(b, ) = F5J (b, 7).
Proof. By applying Lemma 2.4 twice, we find
F* (b, A)TF(b,7) = (1" SgN(IN) (1 SEN(IA) D1 (AT Py1 ()T Byy ()T P11 (7) = — By ()T TT By (7)
= =B} 1(2)T Py (;“) =-J.
Hence
F]z(b7 A)F]z(b, 2) — Fn (b ;L)Fzz(b, ;L) = In and F22 (b, /l)F]z(b7 ;1) — F;z(b, ;V)Fzz(b, ju) =0. (38)

From the second relation in (3.8), we have (observe Lemma 3.1)
F12(b’ j)F; (b’ j) = F£21 (b’ )')qu(b7 ;“)7

and hence, using also the first relation in (3.8) we obtain

Fi2(b, A)ngl(b, A)Fi5 (b, 2) — F11(b, A) = F12(b, A)F12(D, E)ngl(b,j,) —F11(b, ) = (I + F11(b, A)Faa (b, 1))F521(b, 7) — Fi1(b, 1)
=F5 (b,7)

which completes the proof. O
From Lemma 3.3, (3.2), and hence (3.7) can be rewritten in the form

EM,b,2) = (M — (b, 2))" R2(b, 2)(M — €(b, 1)) — R*(b, 2), (3.9)

where

(b, 1) = —F5; (b, A)F;5(b,7) and R(b, i) = Fy3(b, 7).

Definition 3.2. €(b, 2) is called the center of the Weyl disk D(b, 1) or the Weyl circle K(b, 1), while R(b, ) and R(b, 1) are
called the matrix radii of D(b, 1) or K(b, A).

Remark 3.1. Theorems 3.3-3.6 and their proofs are the same as in [18, Theorems 4.8-4.10,4.12]. In order to maintain com-
pleteness, we still present them here.

Theorem 3.3. Define the unit matrix circle and the unit matrix disc by

D ={UeC™ |UU=1I} and D={VeC™ |VV<IL}
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respectively. Then

K(b,2) = {€(b, 2) + R(b, ) UR(b,7) | U € oD}
and

(b, 7) = {€(b, 1) + R(b,)VR(b, ) | V € D}.

Proof. We only prove the first statement as the second one can be shown similarly. From (3.9),

E(M,b,2) =0 if and only if [R™'(b, )(M — €(b, 2))R~' (b, )]'[R™" (b, )(M — €(b, 2))R~' (b, 2)] = I,.. (3.10)
First, let M € K(b, 2) and put
U=R"(b,A)(M—-E(b,1)R(b,2).
Then
M = €(b, 1) + R(b, )UR(D, 2),
and (3.10) yields U'U = I,,. Conversely, let U be unitary and define
M = €(b, 1) + R(b, )UR(D, 1).
Then
U=R"(b,A)(M—E(b,1))R(b,2)
so that
[R71(b, ) (M — €(b, )R~ (b, )] [R71(b, 2)(M — €(b, )R~ (b, )] = I,

and hence (3.10) yields M € K(b,4). O
Theorem 3.4. Forall . € C\R, ;im R(b, 1) exists and gim R(b,2) = 0.

Proof. From Lemma 3.2, F55(b, 4) > 0 is Hermitian and nondecreasing in b. Thus R(b, 1) = F;z%(b, 2) > 0 is Hermitian and non-
increasing in b. Hence gim R(b, 7) exists and is nonnegative definite. O

Theorem 3.5. Forall 1€ C\ R, gim €(b, 2) exists.

Proof. Let by, b, € Z with by <b,. Let V€ D and define
M = €(by, 2) + R(ba, L)VR(by, 7).
By Theorem 3.3, M € D(b,, Z). Hence by Theorem 3.2, M € ®(b,, 2). Again by Theorem 3.3, there exists ¥ (V) € D with
M = €(by,2) + R(b1, ) ¥(V)R(b1, 7).
Thus ¥: D — D satisfies
Y (V) =R (by, )[€(bz, 2) — €(b1, 4) + R(by, )VR(by, 2)]R (b1, 2) (3.11)
for all V e D. This implies
PV — P (Vi) = R (b1, )R(b1, ) [V = Vy]R(ba, )R (ba, 2)
for all V},Vy; € D. Thus ¥:D — D is continuous and hence has a fixed point V e D by Brouwer’s fixed point theorem. Letting
Y(V)=Vin(3.11), we have
[R(b1, )V R (b1, 2) — R(bz, )VR(b2, )]
IR (b1, 2)VR (b1, 2) — R(by, 2)VR (b2, 2)|| + [|R (b1, 2)VR (b3, Z) — R(b2, 2)VR (b2, )|
IR (b1, )[R (b2, 2) = R(b1, )| + | R(b2, 2) = R(b1, A)|[| R (b2, 2],

1€(b2, 4) — €(by, A)]|

<
<

where ||-|| is @ matrix norm. Using Theorem 3.4 completes the proof. O
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Definition 3.3. Let 1 € C\ R and define

Co(2) :==1lim€(b,2) and Ry(1) _llmR(b AR

b—oco
Then Gy (2) is called the center and Ro(%) and R (1) are called the matrix radii of the limiting set
Do(4) == {€ (%) + Ro(H)VRo(2) | V € D}.

The following result gives another expression for Dg(/).

Theorem 3.6. The set Dy(4) is given by Do(4) = () D(b, 7).

b>a
Proof. If M € Dy(2), then there exists V € D such that M = €y(2) + Ro(2)VRo(4). Hence M = 11m M(b), where we have
M(b) = €(b, 2) + R(b,)VR(b,7). Let b > a. Then M(b)e D(b,i)c D(b,) for all b= b by ‘Theorem 3.2 and thus
M = lim M(b) € (b, /). Therefore M € () D(b, ).

b>a

Conversely, if M € (| D(b,4), then for all b > q, there exists V}, € D such that M = €(b, 1) + R(b, 1)VpR(b, 7). Since D is
bza

compact, there exist a sequence {b;} and V € D such that V, — V as k — co. Thus M = €g(4) + Ro(A)VRo(Z) € Dg(4). O

Theorem 3.7. For all /. € C\ R and for M € Dy(4), we have 34 -3IM > 0.

Proof. Assume that 1 € C\ Rand let M € Dy (4). Fix an arbitrary b > a. From Theorem 3.6, Do(4) C D(b, 2). Hence M € D(b, 1),
and thus &M, b, /) < 0. Therefore, (3.4) and Assumption 2.2 yield

M b

R § N
=0 = ZX;H(A)WkaH (4) > 0.
~ k=a

The proof is complete. O

Definition 3.4. Let M be an n x n matrix. We say that

(1) M lies in the limit circle, if M € Dg(A);

(2) M lies on the boundary of the limit circle, if M € Dy(4) and there exists a sequence b, — oo as k — oo such that
’lim E(M, by, ) = 0.
K—00

Theorem 3.8. Let M € C™" and /. € C \ R. Then

(1) M lies in the limit circle if and only if

~

M
me Wiier (2) < 37 (3.12)

(2) M lies on the boundary of the limit circle if and only if
IM
Zxkﬂ Wit (2) = 33 (3.13)

R

Proof. First assume M € Dy(2). Let b >a. Then M € D(b, 1) by Theorem 3.6. Hence £(M, b, %) < 0. From (3.4), we have that

1 3M 3M
Z/k+1 Wk/k+1( ) 2|~ | (M b ) ng

34
Letting b — oo, we arrive at (3.12). Conversely, assume (3.12) holds. Let b > a. By Assumption 2.2,

- IM
Z Lir DWilpeor (2 <D a2 YWilg (2) < =0
k=a g

So £(M, b, 2) < 0 by (3.4). This shows that M € D(b, 2). Using Theorem 3.6 yields M € D, (4). This proves (1), and (2) can be
concluded immediately by (1) and (3.4). O
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Theorem 3.9. Let /. € C\ R. Then M lies on the boundary of the limit circle if and only if!im Ae(AD)T e (4) = 0.

Proof. From Lemma 2.6, for any t > a, we have that
c (1)

s~ * * * 9 s~ < " EY
Ko (DT e ) = 16D T2a04) =200 M) D2 (0 o o s | M) =233 iy (Dt )
k=a k+1 k=a
(3.14)

Since

LD T xo(2) = M" =M = =2i3M,
we get

L DT Aea (A) = 2032 Lea IDWidyer (4). (3.15)

k=a

From Theorem 3.8, M(/) is on the boundary of the limit circle if and only if
303 Lia W Wilyea (2) = M = 0.
k=a

So by (3.15), we have that M is on the boundary of the limit circle if and only if
ALH; X:H (’0ch+1 (’L) =0.

This completes the proof. O
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