PDE - Math 583 Midterm Examination

Each problem is ten points

April 11, 2011

1. State the forms for the following equations:
(a) Heat equation.
(b) Korteweg-de Vries equation.
(c) Minimal surface equation.
(d) Black-Scholes equation.
2. State the local existence theorem concerning the Cauchy problem for the first-order quasilinear PDE.
3. Use the method of characteristics to solve the problem $u_{x}+u_{y}=x, u(x, 0)=h(x)$.
4. What is a characteristic strip of the general first-order equation?
5. Use the method of characteristics to solve the problem $u_{x} u_{y}=u, u(0, x)=x^{2}$.
6. State the general form of the second-order quasilinear PDE and name and define the three classifications for this PDE.
7. Reduce the equation $u_{x x}+x^{2} u_{y y}=y u_{y}$ for $x<0$ to standard form.
8. Solve the equation $y^{2} u_{x x}-2 x y u_{x y}+x^{2} u_{y y}-\frac{y^{2}}{x} u_{x}-\frac{x^{2}}{y} u_{y}=0$ by reducing it to standard form.
9. State d'Alembert's formula.
10. Solve $u_{t t}=u_{x x}, u(x, 0)=2 \sin (x)-\sin (2 x), u_{t}(x, 0)=0, u(0, t)=u(\pi, t)=0$.
