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Chapter 5
Joint Probability Distributions

5.1 Jointly Distributed Random Variables

5.2 Expected Values, Covariance, and Correlation

5.3 Statistics and Their Distributions

5.4 The Distribution of the Sample Mean

5.5 The Distribution of a Linear Combination
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Joint pmf

The joint probability mass function of 
two discrete rvs X and Y is defined 

for all numbers x and y by 
p(x,y)=P(X=x and Y=y)
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Example
We throw two dice. Let X and Y denote the numbers of “3” 
and “4”, respectively. 

Find the joint pmf of X and Y.
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Marginal pmfs

Let X and Y be two discrete rvs with 
joint pmf p(x,y). The marginal

probability mass functions of X and Y 
are defined 

for all numbers x and y by 
pX(x)=∑yp(x,y) and pY(y)=∑xp(x,y).
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Example
We throw two dice. Let X and Y denote the numbers of “3” 
and “4”, respectively. 

Find the marginal pmfs of X and Y.
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Independence

Two discrete rvs X and Y with joint pmf 
p(x,y) and marginal pmfs pX(x) and pY(y) 
are called independent if for every pair 

of x and y values, we have 
p(x,y)=pX(x)pY(y).
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Example
We throw two dice. Let X and Y denote the numbers of “3” 
and “4”, respectively. 

Are X and Y independent?
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Conditional pmf

Let X and Y be two discrete rvs with 
joint pmf p(x,y) and marginal pmfs pX(x) 
and pY(y). Then the conditional pmf of Y 

given X=x is defined by 
pY|X(y|x)=p(x,y)/pX(x).
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Example
We throw two dice. Let X and Y denote the numbers of “3” 
and “4”, respectively. 

For each value of x, calculate the conditional pmf of Y 
when X=x.
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