
Spatio-Temporal Query Processing in

Smartphone Networks

Demetrios Zeinalipour-Yazti

Department of Computer Science, University of Cyprus

P.O. Box 20537, 1678 Nicosia, Cyprus

dzeina@cs.ucy.ac.cy

Abstract— In this position paper, we present a powerful and
distributed spatio-temporal query processing framework, coined
HUB-K. Our framework can be utilized to promptly answer
queries of the form: “Report the objects (i.e., trajectories) that
follow a similar spatio-temporal motion to Q, where Q is some
query trajectory.” HUB-k, relies on an in-situ data storage
model, where spatio-temporal data remains on the smartphone
that generated the given data, as well a state-of-the-art top-k
query processing algorithms, which exploit distributed trajectory
similarity measures in order to identify the correct answers
promptly. We present preliminary design choices, an outline
of our preliminary implementation and an outlook to future
challenges.

I. INTRODUCTION

The advances in networking technologies along with the

wide availability of implicit or explicit positioning technology

in commodity devices, make spatio-temporal records ubiqui-

tous in many different domains. Popular cell-phones, such

as Google’s Android-based1 devices, Nokia’s Maemo-based

devices2 and i-Phone3 devices, are equipped with built-in GPS

receivers that allow these devices to derive their geo-spatial

coordinates over time. Additionally, these devices are already

equipped with a multitude of other sensing devices such as

accelerometers (which enable the derivation of orientation,

vibration and shock), proximity sensors, ambient light sensors

and many others. The advent of these capabilities is soon

expected to provide enormous distributed spatio-temporal col-

lections of data that can create interesting new applications in

a whole new range of domains.

An important observation with these emerging spatio-

temporal systems, is that the generated data remains in-situ,

at the device that generated the data until some event of

interest occurs. This happens mainly for efficiency reasons,

(i.e., it would be too energy costly to continuously transmit

data records over to a centralized entity), but also for economic

reasons (i.e., certain regions are still solely relying on 2G net-

works, thus users can not take advantage ”always-connected”

3G networks.)

We argue that many future applications will adhere to this

in-situ data storage model for the following reasons: i) spa-

1http://www.android.com/
2http://maemo.org/
3http://www.apple.com/iphone/

tiotemporal data becomes available in an ever growing number

of applications; ii) organizations realize that a distributed data

storage and query processing model is in many occasions

more practical than storing everything centrally. A category

of applications for which this is particularly true, are Sensor,

RFID-related, Bokode and other related technologies that try

to capture the physical world at a high fidelity; and iii) many of

the generated spatiotemporal records might become outdated

before they are ever utilized (e.g., a cell phone user might

never be involved in some query), which again shows that

centralization might be a wasteful approach.

To formalize our description, let {A1, A2, · · · , Am} denote

a collection of spatiotemporal trajectories. A spatio-temporal

trajectory Ai (i ≤ m) is defined as a sequence of l multidi-

mensional tuples {a1, ..., al} where each tuple is characterized

by two spatial dimensions and one temporal dimension (i.e.

aj(xj , yj , tj), ∀j ∈ 1, .., l). A segment or subsequence of

a trajectory Ai (i ≤ m), is defined as a collection of r

consecutive tuples [aj ..aj+r] (j + r≤ l). In the context of a

smartphone network, each trajectory Ai resides in its entirety

on some arbitrary smartphone device (i.e., data is fragmented

horizontally).

In this position paper, we present a powerful and distributed

spatio-temporal query processing framework, coined HUB-

K, which relies on an in-situ data storage model, as well

as state-of-the-art top-k query processing algorithms [3], [2].

These algorithms exploit trajectory similarity measures in a

distributed fashion to identify the correct answer promptly.

In the next section we will outline the operation of the HUB-

K algorithm at a conceptual level. We shall then explore our

preliminary implementation and provide an outlook to future

challenges.

II. BACKGROUND AND INTERNAL ALGORITHMS

A. Preliminaries

First note that the similarity query Q is initiated by some

querying node QN , which disseminates Q to all candidate

nodes in the network (e.g., all participating smartphones in a

network). A straightforward way to find the answer would

be for QN to fetch all n trajectories (denoted as DATA)

and then perform a centralized similarity computation using



Fig. 1. Screenshots of the HUB-K prototype system Left: The configuration panel on the Android-based smartphone client; Middle: The message exchange
panel on the client; Right: The Log Panel of the server written in java and executing HUB-K (i.e., node QN).

some known technique such as LCSS, DTW or other Lp-

Norm distance measures presented in [3]. Let us denote the

execution of these centralized techniques as FullM(Q,Ai)
(∀i ≤ m). Although a centralized execution of LCSS is

effective in coping with the temporal and spatial distortions

in trajectories, as it performs local stretching in both time and

space, it is expensive in terms of data transfer and delay as it

requires the transfer of all trajectories prior execution.

B. The HUB-K Algorithm

The HUB-K algorithm is a new iterative algorithm for

retrieving the K most similar trajectories to a query Q

without pulling to Q all trajectories a’ priori. The algorithm

minimizes the number of DATA entries transferred towards

QN by exploiting an upper bound on the Longest Common

Sub-Sequence (LCSS) similarity metric [1]. In particular, each

node compares its local trajectory Ai to a bounding envelope

of the query, i.e.,

LCSS(MBEQ, A) =

n
X

i=1



1 if A[i] within envelope
0 otherwise

The above yields an upper bound score, per moving object

A, that bounds above the LCSS matching between Q and

A (i.e., for any two trajectories Q and A, LCSS(A,Q) ≤
LCSS(MBEQ, A)). The HUB-K algorithm is exploiting the

Upper Bound (UB) in conjunction with an iterative acquisition

process (i.e. rather than a monolithic transfer of all trajectories

a priori, which minimizes tremendously the transfer of data.

III. INDICATIVE EXECUTION PLANS

In this section we outline indicative modes of operation that

are supported by our preliminary implementation.

Interactive Mode: In this mode, users start moving around,

outdoors, by enabling the ”GPS-logging”-mode, supported

from within the user interface of HUB-K. At some arbitrary

point, one of the devices A can ask the server QN to identify

who is moving similar to A. The server will compute the

answer and transmit it back to the user. The result will show

up on an interactive Google-maps plot, so that user A can

compare the result to its own trajectory. Preliminary tests have

shown that such an action is taking only a few seconds, as

opposed to the lengthy process of percolating each and every

reading to QN , so we expect this feature to be of particular

interest.

Trace-driven Mode, With this mode, researchers are able to

realistically evaluate the given framework by select among

a number of available traces (e.g., spatio-temporal data gen-

erated with the Network-based Generator of Moving Ob-

jects [4] and other datasets that we are currently underway

of acquiring). Based on these datasets, researchers are able to

sample out one query trajectory Q and query the network. In

particular, it will be possible to identify the K most similar

trajectories to Q quickly and efficiently (i.e., by showing how

much time it would take to compute the answer with the

centralized approach).

IV. FUTURE CHALLENGES

In this section we outline some challenges that arise in

realizing fully distributed query processing frameworks in

Smartphone Networks.

A. Challenge #1: Data Vastness

The WWW currently holds approximately 48 billion pages

that change ”slowly”. On the other hand, we have more than

1 billion handheld smart devices (including mobile phones

and PDAs) by 2010, according to the Focal Point Group4,

while ITU estimated 4.1 billion mobile cellular subscriptions

by the start of 2009. This raises certainly many problems

in analyzing and querying these massive distributed spatio-

temporal repositories at regular intervals.

4According to the same group, in 2010, sensors could number 1 trillion,
complemented by 500 billion microprocessors, 2 billion smart devices (in-
cluding appliances, machines and vehicles).



B. Challenge #2: Uncertainty

Uncertainty is also inherent in Smartphone networks due to

the following reasons: Integrating data from different smart-

phone devices might yield ambiguous situations (i.e., vague-

ness). Consider for instance the discrepancy that might occur

in comparing spatial data (e.g., Triangulated Access Points

vs. GPS) between different devices. Additionally, consider the

discrepancy that might occur due to faulty electronics that gen-

erate outliers and errors (inconsistency) or even hacked sensor

software might intentionally generate misleading information

(deceit).

C. Challenge #3: Privacy

Frequent node migrations and disconnections in Smartphone

Networks, as well as resource constraints raise severe concerns

with respect to security, privacy and trust. Additionally, the

cost of traditional secure data dissemination approaches (e.g.,

using encryption) may be prohibitively high in volatile mobile

environments.

D. Challenge #4: Testbeds

Currently, there are no testbeds for emulating and proto-

typing Smartphone Networks applications and protocols at a

large scale. The MobNet project (funded by the University

of Cyprus between 2010-2011), is developing an innovative

cloud testbed for mobile sensor devices using the Android

Operating System. Consequently, users will be able to develop

and deploy smartphone applications massively rather than

individually on these devices.

ACKNOWLEDGMENTS

This work is supported by the Startup Grant of the last author,

funded by the University of Cyprus during 2010-2011.

REFERENCES

[1] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, E. Keogh, “Indexing
multi-dimensional time-series with support for multiple distance mea-
sures” In ACM SIGKDD’03, Washington, D.C., pp. 216-225, 2003.

[2] D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos and V. Kalogeraki, V.
Tsotras, M. Vlachos, N. Koudas, D. Srivastava, “Finding the K Highest-
Ranked Answers in a Distributed Network”, Computer Networks,
Volume 53, Issue 9, 25 June 2009, Pages 1431-1449

[3] D. Zeinalipour-Yazti, S. Lin, D. Gunopulos, “Distributed Spatio-
Temporal Similarity Search” The 15th ACM Conference on Informa-
tion and Knowledge Management (CIKM’06), Arlington, VA, USA,
November 6-11, to appear, 200

[4] T. Brinkhoff: “A Framework for Generating Network-Based Moving
Objects”, GeoInformatica 6(2): 153-180 (2002)


