
Query Processing in Connectivity-Challenged Environments∗

P. Puri S. Chakravarthy G. Poornima M. Kumar
IT Laboratory and Department of Computer Science & Engineering

The University of Texas at Arlington, Arlington, TX 76019.
Contact Email: sharma@cse.uta.edu

Abstract

This paper presents a discussion of issues that need
to be addressed for processing relational queries in dis-
tributed environments where the connectivity is unstable
and is changing continuously. Query processing over
data across nodes that are collecting information is an
example of such an environment. Traditional distributed
query processing techniques need to be extended to ac-
commodate new requirements.

1. Introduction
Query processing and optimization [1, 2, 3, 4, 5,

6]has been studied in the centralized database manage-
ment system (DBMS) context and is well established.
Similarly, distributed query processing has also been
studied using semi-join and other extensions [7, 8, 9,
10, 11]. However, in distributed environments where
the data accumulation by each node is dynamic and
where connectivity among nodes is changing unpre-
dictably, query processing poses some additional chal-
lenges. Replication data item and whether it is complete
or not from the viewpoint of query processing becomes
very important. Static plan generation does not make
much sense. Accurately estimating the result sizes may
entail communication with other nodes during plan gen-
eration stage.

2. Context
Figure 1 shows a number of aerial vehicles that are

acquiring data (over a period of time) and have intermit-
tent connectivity with other aerial vehicles. If a query
is sent to one of the nodes that involves join or other
computation involving data from other nodes, a query
plan needs to be generated to process the query in a
distributed data setting to compute the result. As the
connectivity changes based on a number of parameters
(speed, direction of motion, obstructions, etc.), the chal-

∗This work was supported, in part, by the AFRL Contract FA8750-
09-2-0199

lenge is to generate a ”good” plan and execute it in this
environment with good response time and using com-
plete data available. The dotted lines show change in
connectivity along the time dimension.

Figure 1. Distributed, Connectivity-
challenged Scenario

It is also assumed that the nodes can be of differ-
ent types based on processing capacity, storage, types
of data it can collect, up/down link bandwidths, and la-
tencies of data transfer. Nodes can also play different
roles (depending upon the resources available onboard):
i) collect data and forward it, ii) collect data, processes it,
and forward both collected and processed data, and iii)
collect, process, store/hold, and forward data. A single
node can play different/multiple roles for different types
of data. The roles may change over time.



3. Architecture
The proposed long-term architecture for handling

computations for the scenario shown in Figure 1 is elab-
orated in Figure 2.

The architecture indicates several capabilities that
will make the system complete with respect to query
computation over distributed data, Fault tolerance with
respect to connectivity and accessibility/reachability of
data, and the specific context information as needed by
the SOA. However, this position paper mainly addresses
the query processing challenges.

4. Query Processing
The overall architecture includes a middleware in

each node that has a number of services (based on SOA)
for Collecting, Managing, Replicating data and Meta
data for the purposes of routing and query processing.
Briefly, the following services are used:

1. Message passing and management of meta data

2. Meta data maintained at each node

3. Query plan format and query execution

4. Replica determination and management

Currently, replication is assumed to be single copy
and complete for each relation (i.e., data in each node).
This needs to be extended to multi-copy and partial
replica to accommodate intermittent connectivity. This
extension will add complexity to both Meta data man-
agement and query processing.

4.1 Query Plan
A query plan for the above scenario is envisioned

as numbered sequence of steps that can be easily inter-
preted and executed at any node. Table 2 gives the plan
format for each operator. Each step includes the oper-
ation to be applied, the data and the node where it is
applied, and the name of the result and the node where
it is stored. Table 1 provides all the operators needed
for processing a select-project-join (SPJ) query in this
environment. A plan counter is initialized to 1 and is in-
cremented until all the plans steps are executed. When
the last step of the plan is executed, query execution is
over and the result will be in as many nodes as indicated
in the query.

Unlike traditional query processing, the plan needs
to be sent from node to node for the purposes of query
processing. A plan counter indicates the next step of the
plan to be executed. The format of the plan is indicated
below.

The copy instruction retains a copy of the relation in
the node whereas the move instruction does not retain a
copy of the relation when moved to another node. This

is needed if the result of a query need to made avail-
able to multiple nodes. The above format is sufficient
to describe any arbitrary relational query plan involving
selects, projects, and joins (also known as an SPJ query).
The above format can also accommodate SQL aggregate
operators, such as a SUM, COUNT, AVG, MIN, and
MAX. The query execution proceeds as follows. The
plan is sent to the node in which the first operation takes
place (if it different from the node where the query plan
is generated). The interpreter in that node uses the plan
counter to execute as many steps as possible in that node.
When a move or copy is encountered, it send the data as
well as the plan (can be the remaining plan) to that node.
This process continues until the last step of the plan is
executed. The result is in the last node where an oper-
ation is executed (or moved). Currently, the final query
plan is generated as follows. Each node in the architec-
ture has the same query plan generator and uses only the
Meta data in that node. The query plan is constructed
one join at a time. Cost computations of partial plans are
done using the statistics and formulas for computing se-
lectivity of joins and semi-joins. The lowest cost query
plan is used as the final plan after all possible plans are
explored. The complexity of the current plan generation
is kn where n is the number of joins and k is the number
of alternatives for each join. Currently, k being used is
about 14 (multiple join alternatives, multiple semi-join
alternatives and the same using replica as well) and we
are assuming no more than 3 to 5 joins in a query. Even
with this assumption, we will explore a large number of
alternative query plans and cost computation for each of
them. We will incorporate some heuristics to limit the
number of plans carried forward after each join. Sim-
ulations will be performed to validate the heuristics to
make sure they are meaningful. Statistics in the form of
cardinality and domain characteristics are used for cost
estimation. Join and condition selectivity are inferred
from the statistics maintained. Result sizes are also esti-
mated and its accuracy is important as choice of the best
query plan is primarily based on the cost of data transfer
based on availability of connectivity. These need to be
improved using simulation and analysis.

4.2 Challenges

Static plan generation is not the best approach for
our situation as the connectivity and hence availability
of data can change significantly over short periods. It is
entirely possible that the connectivity has changed from
the time the plan has been generated to the time a par-
ticular step of the query plan is executed. In this case,
a new plan from that point of query execution has to be
regenerated. Below, we identify a few approaches that
are better suited for this scenario.



Figure 2. Proposed Long-term Service Oriented Architecture

Operation Parameter Opd 1 Opd 1 Loc Opd 2 Opd 2 Loc Result Name Result Loc

Table 1. Plan Format

4.2.1 Dynamic plan generation

One alternative is to generate one join execution plan
at a time. At the end of the execution of each join, a
plan for executing the next join is generated. This ap-
proach, though proposed earlier in Ingres but not used
by any commercial system, may be a viable one for our
scenario. This also has the advantage of using the cardi-
nality and other statistics that are more accurate than the
ones used in a static plan.

4.2.2 Parallel Execution of local operations

Another alternative is to execute all local operations in
each node in parallel before generating any join plans.
At the end of this step, dynamic plan generation ap-
proach is used. This approach can also benefit from
accurate cardinality and other statistics. This improves
over the dynamic plan in that multiple local computa-
tions can be done concurrently thereby improving re-
sponse time. However, the execution of the plan requires
more coordination and more message passing as com-
pared to the previous approaches.

4.2.3 Interactive Plan generation

In this approach, each node where a local operation or
a join needs to be executed can be queried with respect
to the actual cardinality and other statistics information

before generating the plan for each join. This approach
will provide accurate information due to which a better
sequence of join plans can be generated. This combines
the advantages of parallel plan execution with that of a
dynamic plan generation without making the plan exe-
cution and synchronization further complicated.

In addition, all approaches can benefit from sophis-
ticated estimation of selectivity, and cardinalities of
intermediate results (such as histograms, distribution,
caching of statistics from previous executions, etc.)

4.2.4 Replication

Currently, replication is assumed to be single copy and
complete for each relation. Completeness assumption
may be difficult to accomplish die to connectivity issues.
Single-copy assumption may make the data availabil-
ity difficult. In order to overcome both of these issues,
multi-copy and partial replication can be used. How-
ever, extending query processing to include multi-copy
and partial replica will add complexity to both Meta data
management and query processing.

5. Conclusions
We have highlighted the differences between query

processing in a distributed environment and a distributed
environment in which connectivity is further subject to



Operation Parameter Opd 1 Opd 1 Loc Opd 2 Opd 2 Loc Result Name Result Loc
Select A > 100 R1 1 Null Null R11 1

Project A1, A3, A6 R11 1 null null R12 1
Move Null R12 1 null null R

′′
4

Copy Null R12 1 null null R14 4
Semi Join A = C R

′′
2 R2 2 SR1 2

Join B = D R12 2 R22 2 JR1 2

Table 2. Plan format of each operation

breakdown. We have analyzed the advantages and disad-
vantages of various query processing alternatives. Cur-
rently, we are developing plan generation and query exe-
cution details. Furthermore, replication and is concomi-
tant meta data management issues are also being investi-
gated.

References
[1] P. Selinger et al., “Access path selection in a

relational database management system,” in Pro-
ceedings 1979 ACM SIGMOD International Con-
ference on Management of Data, Jun. 1979.

[2] J. D. Ullman, Principles of Database Systems,
2nd Edition. Computer Science Press, 1982.

[3] M. Stonebraker, Ed., Readings in Database Sys-
tems. Morgan Kaufman Inc., 1988.

[4] S. Chakravarthy, “Multiple Query Optimization:
Organization of the Strategy Space and the Gen-
eration of Shared Multi-strategies, Technical Re-
port, XAIT-89-01,” Xerox Advanced Informa-
tion Technology, Cambridge, Tech. Rep. 177,
Mar. 1989.

[5] S. Chakravarthy, “Divide and Conquer: A Basis
for Augmenting a Conventional Query Optimizer
with Multiple Query Processing Capabilities,” in
Proc. of the 7th Int’l Conf. on Data Engineering,
Kobe, Japan, Apr. 1991, pp. 482–490.

[6] R. Ramakrishnan, Database Management Sys-
tems. WCB/McGraw-Hill, 1998.

[7] Robert Epstein, Analysis of Distributed Database
Processing Strategies. Electronics Research Lab-
oratory, College of Engg. University of California,
1980.

[8] S. Ceri and G. Pelagatti, Distributed Databases
- Principles and Systems. McGraw Hill, 1984.

[9] M. T. Ozsu and P. Valduriez, Principles of Dis-
tributed Database Systems. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1991.

[10] A. P. Sheth and J. A. Larson, “Federated database
systems for managing distributed, heterogeneous,
and autonomous databases,” ACM Computing
Surveys, vol. 22, no. 3, pp. 184–236, Septem-
ber 1990.

[11] G. M. Sacco and S. B. Yao, “Query optimiza-
tion in distributed database systems, Tech. Rep.
Working Paper MS/S 81 - 029, 1981.


