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Abstract

This paper presents an architecture for addressing the
transformation of large volume of data generated by per-
vasive and other sensor applications in a timely man-
ner (or subject to quality of service or QoS constraints).
As the size and rate at which raw data is generated in-
creases, novel approaches for meaningful reduction and
extraction of actionable information from the data are
needed. In this short paper, an architecture, based on the
synthesis of stream and complex event processing (CEP)
approaches, is presented. The proposed architecture is
flexible and accommodates the use of a number of alter-
native or complementary techniques/approaches.

1. Introduction

What is an effective architecture for situation mon-
itoring applications? That is, applications in which
very large amounts of raw data (presented in real time
or near-real time) need to be meaningfully aggregated,
correlated, and reduced to identify actionable knowl-
edge and notified. How do we progress towards a flex-
ible, composable architecture for analyzing large vol-
umes of data? These questions certainly need to be
answered as we move towards pervasive data manage-
ment and just-in-time monitoring requirements. The
amount of data that will be generated, and hence need
to be processed is only going to increase dramatically
as the technology improves. Application requirements
will grow to include distributed data handling, handling
of errors, privacy issues, security as well as collabora-
tion/cooperation among applications. Filtering, fusion,
aggregation, and correlation (to name a few) will become
preferred mechanisms for dealing with vast amounts of
disparate raw data to extract nuggets of meaningful and
useful knowledge.
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2. Looking Ahead
As an answer to the above questions, the general

architecture of situation monitoring applications is de-
picted in Figure 1. Ability to convert very large amounts
of raw data into actionable knowledge and in real-
time (or near real-time) will form the cornerstones of
these architectures. Figure 1 shows the components at
the subsystem level. The inverted triangle is symbolic
of the data reduction/aggregation/fusion/correlation pro-
cess through a multi-stage process using which nuggets
of actionable knowledge are extracted.

There may be several layers of data reduction and
correlation. The initial reduction of raw data is likely
to come from a computation-intensive process (whether
it is stream processing, fusion, mining, or some other
mechanism is not so critical) which gives rise to a num-
ber of high-level, domain/application-specific “interest-
ing events”. The results from this stage can be used
directly or stored for later analysis. These “interesting
events” are further composed as dictated by the applica-
tion semantics to detect higher-level “situations”. This
process of generation of “interesting events” and correla-
tion may be repeated several times until the desired level
of abstraction is reached.

It is important to understand that stream process-
ing [1, 2, 3, 4, 5, 6] is only one approach for convert-
ing large amounts of raw data into “interesting events”
or results that are useful in their own right. This layer
can change/evolve, in a number of ways including newer
techniques, over time. The complex event process-
ing [7, 8, 9, 10, 11, 12, 13, 14] layer is also likely to
undergo changes (as we have already witnessed over the
course of 20+ years). Together, the components indi-
cated Figure 1, will provide the functionality needed for
situation monitoring applications for a long time.

3. MavEStream: An Integrated Architec-
ture

The proposed integrated architecture is elaborated in
Figure 2. Our architecture consists of four stages:



Figure 1. Architecture of Situation Monitor-
ing Applications

Continuous Query (CQ) Processing (Stage 1): cor-
responds to the CQ processing of data streams. This
stage represents the MavStream (or any other stream
processing system) that accepts stream data as input,
computes CQs, and produces output streams. In this
discussion, we assume that CQs output data streams
in the form of tuples. MavStream currently supports
a number of stream operators: select, project,
join, aggregation operators (sum, count,
max, min, and average) and group by. Having
functionality is implemented using a filter operator on
the output of group by. Stream modifiers have been
proposed as part of continuous queries. Output from a
CQ can be consumed by an application; if needed, the
output is also propagated to the event processing stage
through the event generation interface.
Event Generation (Stage 2): generates events based
on the association of computed events (with or with-
out masks) with CQs. Evaluation of masks is also per-
formed in this stage. In addition to the extensions to both
systems (further elaborated below), stage 2 has been
added to facilitate seamless integration of the two sys-
tems. This stage allows for stream output to be split to
generate different event types from the same CQ.
Complex Event Processing (Stage 3): represents the
complex event processing component, where complex
events are detected based on the definition of event
expressions. Computed events generated by CQs
act as primitive events. In the integrated architecture,
computed events are raised by the event generation

stage.
Rule Processing (Stage 4): is a component of CEP
system which processes rules that are associated with
events. When events are detected, conditions (specified
as methods) are evaluated and if they evaluate to true,
corresponding actions are performed. Events and rules
can be added at run-time. Rules can raise events result-
ing in cascaded execution of event detection and rule ex-
ecution.

3.1 Strengths of the Architecture

Figure 2. Multi-Stage Stream and Complex
Event Integration Model

The architecture presented in Figure 2 is motivated by
the separation of semantics and roles while preserving
the expressiveness and efficiency of computation. Opti-
mization of individual components will be much easier
(and some work already exists in this direction) than op-
timizing the combined specification as a whole. Also,
from the users’ perspective, understandability and man-
ageability of CQs and event specifications will be much
easier than either a procedural approach or composing
already overloaded constructs (or operators).

The seamless nature of our integrated architecture is
due the compatibility of the chosen event processing
model (i.e., an event detection graph) with that of the
stream processing model used for stream processing.

We want to emphasize that the architecture shown
above does not limit the applications to one stage of
stream processing followed by one stage of complex
event processing. We want to unequivocally indicate that
there is no such arbitrary restriction in the proposed ar-
chitecture. Incoming streams can be treated directly as



events, if necessary, by feeding streams to the event gen-
eration operator in stage 2. If there are no masks (or fil-
ters) associated with an event, the event generator node
acts as a no-op. Analogously, as the output of a com-
plex event is a stream, it can either act as an input to an-
other CQ, an application, or propagate to detect higher-
level complex events. In summary, seamless coupling of
the two capabilities allows one to process large amounts
of raw data in one or more stages of CQ and CEP combi-
nation to derive higher-level abstractions or knowledge.
Furthermore, at any point in this process, rules associ-
ated with events (primitive or complex) can trigger ac-
tions and notifications. Arbitrary composition of stream
and complex event processing is readily accommodated
by the proposed architecture. Each subsystem can be
used to its full potential without additional overhead and
the functionalities can be combined as needed. It is even
possible (in this architecture) to associate rules with CQ
nodes if needed. All the functionality for supporting this
capability already exists.

The separation of stream and CEP, and their coupling
has a number of additional advantages. Common com-
putations can be performed by a continuous query and
the output can be split into different types of events of
interest for the purpose of event processing. For exam-
ple, slowing down of a car is a common computation that
can be performed by a CQ and the output can be split
into multiple event types based on the lane characteristic
(regular or HOV). This facilitates modularization and re-
duces the number of continuous queries (or subqueries)
in the system there by improving QoS. Similarly, com-
posite event detection can be added at any time to the
output of CQs in the system. Output of CQs can also be
input selectively to the event processing subsystem. For
example, “if detecting the slowing down of cars and ac-
cidents during rush hours is more important”, this can be
easily accommodated by defining masks on an event for
the same CQ.

4. Summary
We have implemented the above architecture using

existing components to demonstrate the flexibility of the
proposed approach. Other approaches/technologies can
be added, integrated, or replaced, relatively easily, to
suit the needs of the application and data source require-
ments.
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