EMGT378 Intro. to Neural Network

Homework_7

By: Yuping Wang
Classification of nonlinearly separable data using backpropogation. A simple example.

Take the graph below, it looks something like a bullseye: (The graph isn't precise, but it is supposed to be a red circle of radius 1, centered at (0,0), then a blue ring exactly one unit wide, then a red red ring of one unit width, and then blue.)

The Black lines represent the x and y axis, and the red and blue represent the classification of each point in the x-y plane. Obviously, it is clear the above graph is NOT linearly separably.

Create a neural network using backpropgation to classify input into the categories given by the graph above. How much data you use to train your network is a parameter that is up to you. However, too much data wil take too long to train so it is not advantageous to train the network using every possible point, and too little data will not be enough to correctly classify all possible test cases.

Show that your network successfully classifies the test data if you haven't already done so.

The following 5 questions ask for a simple answer, for example a single number related to the network that gave the test results plot you have just provided. If your TestData Results look like a 'bullseye' than there are NO Wrong answers.
1.)
How many neurons does your network need to correctly classify the data?

2.)
How many inputs and target pairs are you using to train your network? In other words, how large is your training data?

3.)
What is your error rate that terminates the training process? Or what is your training goal?

4.)
How many epochs does your network need to train the data to your specified error rate?

5.) What variation of backpropogation learning rule are you using.

NOW: Try different combinations of the five parameters mentioned above and analyze the results. DO NOT show all the results in this report. Instead come to some conclusions about the five realtions mentioned above.

Answer:
The NN Toolbox code below is used to study the network performance with different parameters.

clear

n_it = 500; %number of input/target pairs

n_neuron = 15; %number of neurons

n_epoch = 700; %number of epochs

n_Test = 3000; %number of points for simulation

goal = 0.01;

%Prepare input/target pairs

for i = 1 : n_it

 P_input(i,:) = [rand*6-3 rand*6-3];

 Radius = sqrt(P_input(i,1)^2 + P_input(i,2)^2);

 if ((Radius>=1 & Radius<=2) | Radius>3)

 T_output(i) = 0;

 else

 T_output(i) = 1;

 end

end

%Set up the network

Net = newff(minmax(P_input'),[n_neuron 1]);

Net.inputWeights{:,:}.initFcn = 'rands';

Net.layerWeights{:,:}.initFcn = 'rands';

Net.trainFcn = 'trainlm';

Net.trainParam.epochs = n_epoch;

Net.trainParam.goal = goal;

subplot(1,2,1)

Net = train(Net,P_input',T_output);

%Simulation

for i = 1: n_Test

 xTest = rand*6 - 3;

 yTest = rand*6 - 3;

 a = sim(Net,[xTest;yTest]);

 subplot(1,2,2)

 if (a > .5)

 plot(xTest,yTest,'r.')

 else

 plot(xTest,yTest,'k.')

 end

 hold on;

end

Case I ---- successful classification example

Number of neuron = 15

Number of input/target pairs = 500

Number of epochs = 700

Number of points for simulation = 3000

Goal = 0.01

Training function: Levenberg-Marquardt backpropagation

Performance = 0.0571

[image: image1.wmf]
A) Specifically, is there a minimum number of neurons your network needs to correctly classify the test data? Show the test result plot when too few neurons are used. Be sure you repeat the process a few times to make sure the network REALLY has too few neurons to correctly classify the network, and your results are not related to a poor choice of initial weights.

Case II ---- fewer neurons are used:

1) Number of neuron = 6

Number of input/target pairs = 500

Number of epochs = 700

Number of points for simulation = 3000

Goal = 0.02

Training function: Levenberg-Marquardt backpropagation

Performance = 0.15276

[image: image2.wmf]
2) Number of neuron = 10

Number of input/target pairs = 500

Number of epochs = 700

Number of points for simulation = 3000

Goal = 0.02

Training function: Levenberg-Marquardt backpropagation

Performance = 0.1058

[image: image3.wmf]
After experimenting with different number of neurons, it seems that the minimum number of neurons for a successful classification depends on the size of the training set. e.g. if training set size is 500, at least 15 neurons are needed; if training set size is 1000, then 12 or 13 neurons are needed.

B) Give an example (a test result plot) where the network has overfit the data. Overfitting the data can occur from a number of poor choices of the above parameters, or a combination of a few of them. Data Overfitting refers to a network that has learned the training data 'too well' and therefore cannot classify correctly fresh inputs.

Case III ---- overfitted data

Number of neuron = 25

Number of input/target pairs = 300

Number of epochs = 700

Number of points for simulation = 2000

Goal = 0.01

Training function: Levenberg-Marquardt backpropagation

Performance = 0.310566

[image: image4.wmf]
 We can see that the network with 25 neurons in the hidden layer has too much flexibility for this problem, thus it's unable to generalize well.

C) In this problem, we could use as input to the network more than 50,000 data points. We could include enough data to guarantee presenting to the network as training data every possible input combination and Target . However, the result would be an incredibly slow training algorithm. Computation time is an important element of any computer code designed to solve a problem. By testing different values and combinations of the parameters, determine the smallest training set the network would need to correctly learn the classification (based on the other parameters you have chosen). How many data points are there in your training set? Was the data generated randomly, or were specific points chosen as input? What were the other parameters in the network? Give an analysis with your conclusions.

By testing different combinations of the parameters, we found that when the number of neurons equals to 15 and 700 epoch is used, at least 400 pairs of input/target pairs are needed. When number of neurons equals to 25 and 700 epoch is used, at least 300 pairs of input/target pairs are needed. All the training data are generated randomly.

Parameters that have an effect on the results include: the number of neurons in the 1st layer, the number of epoch used in the training process, the performance goal and different training functions.

The following remarks can be made:

· When the number of neurons increases, the MSE will be lower and converge faster. In order to obtain the same goal it needs smaller size of training set, but it can't be too small to obtain the correct result (too many parameters but less training data to calculate them).

· The training function will determine the converging speed and the performance goal will determine whether the correct result can be obtained. For a tough performance goal and slower converging speed, it needs bigger training set and more training steps.

D) Compare results using different backpropogation training rules discussed in your book with your network. Discuss the results (no test result plots are necessary here) of your comparison. Focus your discussion on average epochs (rate of convergence) and stability of the algorithm. How likely is the network to get stuck in a local minimum and is there a training algorithm that will guarantee convergence of the error to the global minimum (Does this solution space have a global minimum? What do you think?)
Take 400 pairs of input/target training data and 1-15-1 network for example, the following remarks can be made:

· Steepest Descent with Momentum backpropagation is stable and also is the slowest one. The average epoch number is more than 350 which is very slow.

· Levenberg-Marquart backpropagation is stable and the fastest. The average epoch is around 150.

· BFGS Quasi-Newton backpropagation is stable and fast. The average epoch number is around 200.

· CGBP with Powell-Beale restart is stable and fast. The average epoch number is around 250.

Since this problem is nonlinear, there may be no global munimum. From the training processes, we may change the number of neurons which means different weights and biases but still can obtain the same result.

E) Finally, using the MSE as your performance function, what maximum value, or performance goal is good enough for your network to classify the test data correctly? Does the MSE have to be as low as 0, or can it be as large as 1 without affecting the results? The MSE is related to the size of your trianing set, so make sure your analysis is made based on only a change in the 1 parameter. However, is there a parameter or combination of parameters that affects the maximum value for your training goal? My network test data code given previously rounded the data to the nearest integer. Comment on this strategy. Is it cheating the actual results?

MSE doesn't need to be al low as 0, but it can't be as large as 1 either. When the training set is 400 and number of neuron equals to 15, the maximum value for the performance goal to correctly classify the test data is 0.05. The maximum value for the performance goal depends on the number of neurons, size of the training set and the number of epoch used in the training process.

When the number of neurons and the size of training set increase, MSE can go much lower but the converging speed is slow and it may overfit the result.

No, it's not cheating. When we train the network, we restrict the MSE to a very small value. If we set the performance goal to be 0.05, which means that the mean square root of the error would be around 0.22. Also, we have only two possible output 0 and1, which has the same possiblility to be arrived and the same possibility to be on the opposite sides of 0.5 but the same far from it. Our goal is to separate the two kinds of patterns. So, we rounded the data to the nearest integer which is within the threshold of error and acceptable.

2

 �
�

1�
�

-1�
�

 3

 �
�

-2

 �
�

-3

 �
�

