
CpE401: Advanced VLSI Design
Semester Project

Fall Semester, 2003.

For your project, you will design a simple Lempel-Ziv (LZ77) real-time encoder. The
project will be designed in VHDL for implementation in a custom chip. By completion
of the project, your design should be ready for shipping to be fabricated by MOSIS.
Details are given below.

Background/Specification:

Lempel-Ziv is a lossless encoding scheme often used to compress data-files and more
recently used for real-time compression of data for telecommunications. There are
several variants of the Lempel-Ziv algorithm. We will implement one of the most simple
versions, the LZ1 (also known as the LZ77) algorithm. The technique will be explained
in class. For additional information see references [1], [2], [3]. Many additional
resources are also available on the web.

A block diagram of the encoder you will implement is shown in Fig. 1. The arrows show
whether a pin is an input or an output. Pins on the left are used to communicate with an
attached microprocessor or to receive a clock signal. The pins on the right are used to
transmit compressed data.

The RESET pin is used to restore the chip to a pre-defined state.

The attached microprocessor sends the encoder information through the 8-bit data input
bus. This information is buffered internal to the LZ encoder. Information in the buffer is
compressed and written out 1-bit at a time through Dout. Data is sent most-significant bit
first. A new value is presented on Dout for each rising edge of CLKout. CLKout is
determined internally by the encoder and has a period that is an integer multiple of the
input CLK’s period. If the encoder does not have any information to send, then CLKout
= 0.

Several parameters determine the performance of the encoder, as will be discussed in
class. For your design, you will use the following:

Dout

RESET
CLK

CS/
CLKout

RDY/

data
8

LZ encoder

Fig. 1. Block diagram of the LZ encoder.

WR/

• The overall size of the encoder’s internal buffer will be 128-bytes long... that is,
the encoder can store 128-bytes of information sent to it from the microprocessor.

• 32-bytes of the internal buffer make up the “codebook”... these are bytes that are
either zero on reset or have already been transmitted.

• The search-window size is 16-bytes (i.e. the maximum code-word length is 16-
bytes).

• The output codeword is 3-bytes long. The first byte is the value of the pointer, the
second byte is the length, and the last byte is the new symbol (This code-word
length obviously is not optimal, but is sufficient for our current purposes).

A communication sequence with the microprocessor looks something like this:

1. Input signals start as RESET=0, WR/=1, CS/=1.
2. If the encoder is ready to receive information, the encoder has RDY/ (ready)

pulled low. The microprocessor will not send information if RDY/ is high.
3. The microprocessor places the (8-bit) data on the data lines. The address is

“latched” by the transmitter when the microprocessor pulls CS/ and WR/ low
(typically, CS/ is pulled low before WR/, though either is OK).

4. The data-write process ends when WR/ goes high.
5. If the written data fills the encoder’s input buffer, then the encoder sets RDY/

high indicating that no more information can be received. RDY/ is set low again
once the encoder’s input buffer has more room available.

Your top-level entity should be declared as:

entity LZ_ENCODER is
 port(data: in std_logic_vector(7 downto 0);

WR, CS, CLK, RESET: in std_logic;
RDY: out std_logic;
DOUT, CLKOUT: out std_logic);

end entity LZ_ENCODER;

You should make your design as small and as fast and to use as little power as possible.
Obviously, there will be tradeoffs you will have to make (e.g. by adding extra hardware
you might be able to make it faster but it will be bigger and use more power). You
should explain these decisions in your report. The process of deciding among these
tradeoffs is an important part of VLSI design. Some interesting suggestions for
improving all three are given in [2], [3].

Preparation for MOSIS: Preparing a chip for MOSIS is not terribly different than steps
we’ve used in CpE311 for synthesizing a design to an FPGA, though there are additional
steps needed to test power usage, to specify I/O connections, and to generate the CIF file
that is shipped to MOSIS. All these steps can be performed in Mentor Graphics.
Additional details will follow in the near future. For information about MOSIS in
general, check out http://www.mosis.org.

If we had time to fabricate your design, it would be implemented using the 0.5 micron
AMIS process (see http://www.mosis.org/Technical/Processes/proc-ami-c5n.html). This

process has 3 metal layers, 2 poly layers, allows stacked contacts, and is made for 5-volt
applications. For this process λ = 0.3 microns (giving a little bit of wiggle room).

Testing: A simple testbench has been provided for you on my web site. At a minimum,
your design should pass this testbench; however, you are also responsible for more
complete testing of your project. Your project will be tested by another much more
complete testbench of my own after it is turned in.

Teams: Projects will be done in teams of 3 of your own choosing. Team member
contribution will be evaluated in the final report and through a confidential evaluation the
last day of the semester.

Report: Your completed project will be documented in a final written report. The report
itself (not including source code, schematics, or simulation results) should not exceed 12
pages unless you get special permission from the instructor. At a minimum, your report
should include:

• Title and team members
• Summary. Summarize entire project in 200 words or less. Be as specific as

possible (similar to cliff notes).
• A clear explanation of your design rationale. Include a block-diagram of your

intended design. Explain how you ensured implementation of this design
through your VHDL code (i.e. it is sometimes possible to write VHDL code
that synthesizes to something very different than you intended).

• An explanation of your test rationale, including testbenches, results, a logical
explanation of why your test results/methods convince you your design
REALLY works (think of me as your boss, getting ready to spend $100k
getting your design fab’d. I wouldn’t be happy if I spent money to fab it and it
didn’t work. Convince me to spend the $$). Testing with my testbench is the
minimum requirement.

• If your design did not work, give me an explanation of why it didn’t work and
what would be needed to fix it.

• If you tried multiple design options, summarize options you tried and discarded
with an explanation why they were discarded (for example, if you were trying
to get the smallest, fastest design possible).

• Work effort distribution. List each person in your group. Tell what their job
was and the total percentage effort they contributed to the completion of the
project.

• Design “datasheet”. The datasheet will summarize the design’s features and
performance specifications. A good example of a word-based datasheet is
given at http://www.umr.edu/~daryl/classes/cpe311/ds1822-datasheet_v2.doc.
(Yours does not have to be so complete). Your datasheet MUST include:

o Maximum clock speed.
o Maximum output transmission speed (in bits per second). I just

want the rate that bits are coming out -- you do not have to account
for the compression of the input bits (which should give you a
higher overall throughput).

o The size of the chip. Specify which MOSIS chip size you would
need to implement your design (e.g. the 1.5mm by 1.5mm AMIS
tinychip).

o The average power used by the chip.
• Hardcopy of well-commented source code or schematics, included in the

appendix.

Due Dates:

• Thur., Nov. 20. Functionally complete VHDL model that passes vcom (it does not
have to synthesize or work yet).
• Send me the model via email. Your entire project should be tar’d and zipped

into a single file, including the testbench where appropriate. To understand
how to do this, do a “man” on tar and gzip on a Unix machine… I believe the
following command should work: “tar –cf – directory_name | gzip -9 >
yourname.tar.gz”, where directory_name is the name of the directory
containing your design and yourname is YOUR name (so I can easily identify
which files belong to whom). This command should be issued from the
directory containing your design directory (the parent).

• Tues., Nov. 25. Functionally complete VHDL model that synthesizes (it does not
have to work yet).

• Fri., Dec. 5. Complete VHDL model that synthesizes and passes the testbench.
This is your final design. Email me your complete code as well as the .CIF file.

• Tues., Dec. 9. Report

Grading: Grading criteria include the information given in the report, the form and style
of your report, performance of your design - especially with my own testbench,
timeliness in meeting deadlines, design features, project size, speed, and power, quality
of explanations given in the report, and design creativity and elegance. Generally
speaking, a small, fast, low-power design is worth more points than a big, slow, power-
hungry design (unless you can convince me otherwise).

Plagiarism: I would not be surprised if you find similar designs out on the web. You are
welcome to use ideas from other designs, but are responsible for building the design
yourself. If you use ideas from someone else’s design, you must clearly reference their
design in both your report and in your VHDL code/schematic. Failure to do so will
bear very unpleasant consequences (failure of the course or worse!). If you have any
doubts about using someone else’s ideas, please ask! Each team must develop their own
project. Sharing schematics or VHDL code is forbidden.

References

[1] Ziv, J.; Lempel, A. “A universal algorithm for sequential data compression,” IEEE

Transactions on Information Theory, Volume: 23(3), pp. 337 -343, May 1977.
[2] R. Ranganathan and S. Henriques, “High-speed VLSI design for Lempel–Ziv-based

data compression,” IEEE Trans. Circuits Syst., vol. 40, pp. 96–106, Feb. 1993.
[3] Bongjin Jung; Burleson, W.P.; “Efficient VLSI for Lempel-Ziv compression in

wireless data communication networks,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 6(3), pp. 475 -483, Sept. 1998.

