CS 253: Algorithms

Chapter 8

Sorting in Linear Time
How Fast Can We Sort?

I won’t quit until I find a $\Theta(n)$ sorting algorithm.
How Fast Can We Sort?

- Insertion sort: $O(n^2)$
- Bubble Sort, Selection Sort: $\Theta(n^2)$
- Merge sort: $\Theta(n \log n)$
- Quicksort: $\Theta(n \log n)$ - average

What is common to all these algorithms?
- They all sort by making comparisons between the input elements.
Comparison Sorts

- Comparison sorts use comparisons between elements to gain information about an input sequence \(\langle a_1, a_2, \ldots, a_n \rangle \)

- Perform tests:

 \[a_i < a_j, \quad a_i \leq a_j, \quad a_i = a_j, \quad a_i \geq a_j, \quad \text{or} \quad a_i > a_j \]

 to determine the relative order of \(a_i \) and \(a_j \)

- For simplicity, assume that all the elements are distinct
Lower-Bound for Sorting

Theorem:

To sort \(n \) elements, comparison sorts must make \(\Omega(n \log n) \) comparisons in the worst case.
Decision Tree Model

- Represents the comparisons made by a sorting algorithm on an input of a given size.
 - Models all possible execution traces
 - Control, data movement, other operations are ignored
 - Count only the comparisons

![Decision Tree Diagram]

Worst-case number of comparisons depends on:

- the length of the longest path from the root to a leaf
 (i.e., the height of the decision tree)
Lemma

Any binary tree of height h has at most 2^h leaves

Proof: by induction on h

Basis: $h = 0 \implies$ tree has one node, which is a leaf

$\# \text{ of Leaves} = 1 \leq 2^0$ (TRUE)

Inductive step: assume true for $h-1$ (i.e. $\# \text{Leaves} \leq 2^{h-1}$)

- Extend the height of the tree with one more level
- Each leaf becomes parent to two new leaves

No. of leaves at level $h = 2 \times (\text{no. of leaves at level } h-1)$

$\leq 2 \times 2^{h-1}$

$\leq 2^h$
What is the least number of leaves in a Decision Tree Model?

- All permutations on n elements must appear as one of the leaves in the decision tree:

 \(n! \) permutations

- At least \(n! \) leaves
Theorem: Any comparison sort algorithm requires \(\Omega(n \lg n) \) comparisons in the worst case.

Proof:

- How many leaves does the tree have?
 - At least \(n! \) (each of the \(n! \) permutations must appear as a leaf)
 - There are at most \(2^h \) leaves (by the previous Lemma)

\[n! \leq 2^h \]

\[h \geq \lg(n!) = \Theta(n \lg n) \]

(see next slide)

Lower Bound for Comparison Sorts

We can beat the \(\Omega(n \lg n) \) running time if we use other operations than just comparing elements with each other!
\[\lg(n!) = \Theta(n \lg n) \]

1. \(n! \leq n^n \quad \Rightarrow \quad \lg(n!) \leq n \lg n \quad \Rightarrow \quad \lg(n!) = O(n \lg n) \)

2. \(n! \geq 2^n \quad \Rightarrow \quad \lg(n!) \geq n \lg 2 = n \quad \Rightarrow \quad \lg(n!) = \Omega(n) \)

\[\Rightarrow \Rightarrow \Rightarrow \quad n \leq \lg(n!) \leq n \lg n \]

- We need a tighter lower bound!
- Use Stirling’s approximation (3.18):
 \[n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right) \]

\[\log_e(n!) = \log_e \sqrt{2\pi n} + \log_e \left(\frac{n}{e}\right)^n + \log_e \left(1 + \Theta\left(\frac{1}{n}\right)\right) \]

\[\geq n \log_e \left(\frac{n}{e}\right) \geq cn \log_e n \quad \text{for } c = 0.5 \quad \text{and } n > n_0 = e^2 \]

\[\log_e(n!) = \Omega(n \log n) \]
Counting Sort

- Assumptions:
 - Sort n integers which are in the range $[0 \ldots r]$.
 - r is in the order of n, that is, $r = O(n)$.

- Idea:
 - For each element x, find the number of elements $\leq x$.
 - Place x into its correct position in the output array.

\[
\text{input array } \quad \begin{array}{cccccccc}
A: & 3 & 6 & 4 & 2 & 5 & 8 & 10 \\
\end{array}
\]

\[
x = 5, \frac{\text{number of elements } \leq 5}{\text{(number of elements } \leq 5)} = 4 \quad \{3, 4, 2, 5\}
\]

\[
\text{output array } \quad \begin{array}{cccccccc}
B: & & & & & & & \\
\end{array}
\]

- put 5 here !!!
Step 1

Find the number of times $A[i]$ appears in A

<table>
<thead>
<tr>
<th>input array A:</th>
<th>3</th>
<th>6</th>
<th>4</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>allocate C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$i=1, A[1]=3$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i=2, A[2]=6$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i=3, A[3]=4$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i=8, A[8]=4$</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$C[i] = \text{number of times element } i \text{ appears in } A$

Allocate $C[1..r]$ (histogram)

For $1 \leq i \leq n$, $++C[A[i]]$

(i.e., frequencies/histogram)
Step 2

Find the number of elements $\leq A[i]$ (i.e. cumulative sums)

Input array A: [3, 6, 4, 1, 3, 4, 1, 4]

Old C array

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

New C array

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

\[C[0] = C[0] \]
\[C[i] = C[i-1] + C[i] \]

\[C[i] \] = # elements $\leq i$
Algorithm

- Start from the last element of A
- Place $A[i]$ at its correct place in the output array
- Decrease $C[A[i]]$ by one
Example

(frequencies)

(cumulative sums)
Example (cont.)

A

1 2 3 4 5 6 7 8

2 5 3 0 2 3 0 3

B

1 2 3 4 5 6 7 8

0 0 2 3 3 3

C

0 2 3 5 7 8

B

1 2 3 4 5 6 7 8

0 0 2 3 3 3 3 5

C

0 2 3 4 7 8

B

1 2 3 4 5 6 7 8

0 0 2 3 3 3 3 5

C

0 2 3 4 7 8

B

1 2 3 4 5 6 7 8

0 0 2 3 3 3 3 5
Alg.: COUNTING-SORT(A, B, n, k)

1. for i ← 0 to r
2. do C[i] ← 0
3. for j ← 1 to n
4. do C[A[j]] ← C[A[j]] + 1
 % C[i] contains the number of elements = i ; frequencies
5. for i ← 1 to r
6. do C[i] ← C[i] + C[i - 1]
 % C[i] contains the number of elements ≤ i ; cumulative sum
7. for j ← n downto 1
 % B[.] contains sorted array
Algorithm: COUNTING-SORT(A, B, n, k)

1. for i ← 0 to r
2. do C[i] ← 0
3. for j ← 1 to n
4. do C[A[j]] ← C[A[j]] + 1
5. for i ← 1 to r
6. do C[i] ← C[i] + C[i - 1]
7. for j ← n downto 1

Overall time: $\Theta(n + r)$
Analysis of Counting Sort

- Overall time: $\Theta(n + r)$
- In practice we use COUNTING sort when $r = O(n)$
 \[\Rightarrow \text{running time is } \Theta(n) \]
- Counting sort is **stable**
- Counting sort is **not in place** sort
Radix Sort

- Represents keys as d-digit numbers in some base-k

 e.g. $\text{key} = x_1x_2...x_d$ where $0 \leq x_i \leq k-1$

- Example: key=15

 $\text{key}_{10} = 15$, $d=2$, $k=10$ where $0 \leq x_i \leq 9$

 $\text{key}_2 = 1111$, $d=4$, $k=2$ where $0 \leq x_i \leq 1$
Radix Sort

- Assumptions: \(d=\Theta(1) \) and \(k = O(n) \)

- Sorting looks at one column at a time
 - For a \(d \) digit number, sort the least significant digit first
 - Continue sorting on the next least significant digit,
 until all digits have been sorted
 - Requires only \(d \) passes through the list

326
453
608
835
751
435
704
690
Radix Sort

Algorithm: RADIUS-SORT(A, d)

for $i \leftarrow 1$ to d

 do use a **stable** sort to sort array A on digit i

- 1 is the lowest order digit, d is the highest-order digit

How do things go wrong if an **unstable** sorting alg. is used?
Analysis of Radix Sort

- Given n numbers of d digits each, where each digit may take up to k possible values, RADIX-SORT correctly sorts the numbers in $\Theta(d(n+k))$

 - One pass of sorting per digit takes $\Theta(n+k)$ assuming that we use counting sort

 - There are d passes (for each digit) $\Rightarrow \Theta(d(n+k))$
Bucket Sort

• **Assumption:**
 ◦ the input is generated by a random process that distributes elements **uniformly** over [0, 1)

• **Idea:**
 ◦ Divide [0, 1) into n equal-sized buckets
 ◦ Distribute the n input values into the buckets
 ◦ Sort each bucket (e.g., using **quicksort**)
 ◦ Go through the buckets in order, listing elements in each one

• **Input:** $A[1 \ldots n]$, where $0 \leq A[i] < 1$ for all i
• **Output:** elements $A[i]$ sorted
• **Auxiliary array:** $B[0 \ldots n - 1]$ of **linked lists**, each list initially empty
Example - Bucket Sort

A

1 | .78
2 | .17
3 | .39
4 | .26
5 | .72
6 | .94
7 | .21
8 | .12
9 | .23
10 | .68

B

0 | /
1 | .17 -> .12 /
2 | .26 -> .21 -> .23 /
3 | .39 /
4 | /
5 | /
6 | .68 /
7 | .78 -> .72 /
8 | /
9 | .94 /
Analysis of Bucket Sort

Alg.: BUCKET-SORT(A, n)

for i ← 1 to n
do insert A[i] into list B[⌊nA[i]⌋]

for i ← 0 to n - 1
do sort list B[i] with quicksort

concatenate lists B[0], B[1], ..., B[n -1] together in order

return the concatenated lists

\[\theta(n) \]

\[O(n) \]

\[\Omega(n) \]
Conclusions

- Any *comparison sort* will take at least $n \log n$ to sort an array of n numbers.

- We can achieve a $O(n)$ running time for sorting if we can make certain assumptions on the input data:
 - **Counting sort**: each of the n input elements is an integer in the range $[0 \ldots r]$ and $r = O(n)$
 - **Radix sort**: the elements in the input are integers represented with d digits in base-k, where $d = \Theta(1)$ and $k = O(n)$
 - **Bucket sort**: the numbers in the input are *uniformly distributed* over the interval $[0, 1)$
Problem

You are given 5 distinct numbers to sort. Describe an algorithm which sorts them using at most 6 comparisons, or argue that no such algorithm exists.

Solution:
Total # of leaves in the comparison tree = 5!
If the height of the tree is h, then \((\text{total # of leaves} \leq 2^h)\)

\[2^h \geq 5! \]

\[h \geq \log_2(5!) \]

\[\geq \log_2 120 \]

\[h > 6 \]

\(\Rightarrow \) There is at least one input permutation which will require at least 7 comparisons to sort. Therefore, no such algorithm exists.