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Abstract

We investigate a dynamic oligopoly game where goods are differentiated and prices are sticky. We study the open-
loop and the closed-loop memoryless Nash equilibrium, and show that the latter equilibrium entails a larger level of
steady state production as compared to the former; both equilibria entail a larger level of production in steady state
than the static game. We also study the effects of price stickiness and product differentiation upon the steady state equi-
librium allocation and profits. The per-firm equilibrium output is increasing in both product differentiation and price
stickiness, while profits are increasing in both product differentiation and the speed of price adjustment. The steady state
social welfare monotonically increases in the speed of price adjustment, and the overproduction entailed by dynamic
competition has beneficial effect from a social standpoint.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The aim of this paper consists in studying the properties of the equilibria in a dynamic oligopoly model
with price stickiness, along the lines first introduced by Simaan and Takayama (1978) and then extended by
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Fershtman and Kamien (1987) and Cellini and Lambertini (2004).2 The novelty of this paper rests on the
fact that we analyse an oligopoly where goods are differentiated, and we study how good differentiation and
price stickiness interact in shaping the equilibrium allocation.

We take into consideration both the open-loop and the closed-loop memoryless Nash equilibrium. In
both cases, an economically meaningful symmetric steady state exists; this equilibrium is a saddle. We focus
on the steady state equilibrium allocation, and study its determinants. The already known properties of the
differential game involving homogenous goods are confirmed; in particular, (i) the static game entails a
lower level of production as compared to the steady-state equilibrium production levels of the differential
game, and the steady-state Nash equilibrium production under the open-loop information structure is smal-
ler than under the closed-loop rule; (ii) the stickier are the prices, the higher the steady state Nash equilib-
rium production levels. This consistency is not surprising, provided that the homogenous oligopoly case can
be interpreted as a particular case of the present model.

In addition, we show that the degree of differentiation among goods is effective in determining both the
production levels, and the responsiveness of quantities and profits to price stickiness. In particular, we show
that the higher is the (symmetric) degree of differentiation among goods, the lower is the steady state level
of production. Moreover, the higher is the degree of differentiation, the lower is the sensitivity of the steady
state level of production to the price stickiness. This means that the degree of differentiation and the degree
of price stickiness affect the steady state equilibrium level of production in much the same way. Concerning
equilibrium profits, we show that they are affected in the same way by price flexibility and product
differentiation.

Finally, we proceed to investigate the first best allocation, where a planner controls firms� output deci-
sions so as to maximise social welfare. We show that the welfare distortion caused by the strategic interac-
tion of profit-maximising Cournot firms is smaller at the steady state under the closed-loop memoryless
Nash equilibrium than in the steady state under the open-loop solution. Both steady states are associated
to a lower welfare loss, as compared to the equilibrium of the corresponding static game. Thus, the welfare
assessment usually drawn from the static analysis is too pessimistic.

The outline of the paper is as follows. Section 2 introduces the basics of the model. Section 3 develops the
differential game under the open-loop information structure, while Section 4 solves the closed-loop game.
Both sections focus on the steady-state level of production, showing that the steady state is a saddle, and
presenting comparative statics exercises on the production levels. The socially optimal production plan is
characterised in Section 5. Section 6 concludes the paper.
2. The setup

A simple way to model price stickiness is to imagine that price adjusts, in response to the difference
between its ‘‘notional’’ level and its current level. Under this perspective, price can be seen as the state var-
iable of a dynamic system. Only a part of the difference between the ‘‘notional’’ and the ‘‘current’’ level of
price can be corrected, in the presence of stickiness. This can be motivated, for instance, by costly adjust-
ment. We formalise this idea, borrowing from Simaan and Takayama (1978), the following motion law con-
cerning the price of any good i:3
2 Sev
1991),
dynam

3 See
Fersht
eral other authors have used the same model for more specific aims. Relevant such examples include Dockner and Haug (1990,
where optimal trade policies are characterised; and Dockner and Gaunersdorfer (2001) and Benchekroun (2003), where the
ic oligopoly model with sticky prices is used to investigate the incentives towards horizontal mergers.
also Fershtman and Kamien (1987). Mehlmann (1988, Chapter 5) provides an exhaustive exposition of both contributions.

man and Kamien (1990) and Tsutsui and Mino (1990) present further results on the same model, in the case of a finite horizon.
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dpiðtÞ
dt
� _piðtÞ ¼ sfbpiðtÞ � piðtÞg; ð1Þ
where bpiðtÞ denotes the notional level of price of good i at time t, while pi(t) denotes its current level. Notice
that the speed of adjustment is captured by parameter s, with 0 < s < 1. In particular, s measures which part
of the difference between the notional price level and the current price level is immediately corrected. The
lower is s, the higher is the degree of price stickiness.

As far as the notional price concerns, it is dictated by the demand condition, deriving from the preference
structure of consumers. We assume that the notional price in any instant t is defined as follows:
bpiðtÞ ¼ A� BqiðtÞ � D

X
j6¼i

qjðtÞ. ð2Þ
This function is borrowed from Spence (1976) and employed by Singh and Vives (1984), Vives (1985), Cel-
lini and Lambertini (1998, 2002), inter alia. The number of available varieties is assumed to be constant
over time and equal to N, with i 2 [1, N]. Parameter A measures the market size or the reservation price,
which is assumed to be equal across varieties for the sake of simplicity. As for parameters B and D, assume
0 6 D 6 B. Notice that parameter D captures the degree of substitutability between any pair of different
goods. In the limit case D = 0, goods are independent and each firm becomes a monopolist. In the opposite
limit case D = B, the goods produced by different firms are perfect substitutes and the model collapses into
the homogenous oligopoly model. Thus, the higher is parameter D, the lower is the (symmetric) degree of
differentiation.4

Consider a population of N single-product firms. The instantaneous production cost function of firm i is
assumed to be quadratic:
CiðtÞ ¼ cqiðtÞ �
1

2
½qiðtÞ�

2
; 0 < c < A. ð3Þ
As a consequence, the instantaneous profit function of firm i is
piðtÞ ¼ qiðtÞ � piðtÞ � c� 1

2
qiðtÞ

� �
. ð4Þ
For future reference, we report the solution of the static problem, where the notional price is equal to the
current price, and each firm simultaneously chooses the quantity to be produced. In such a case, the max-
imisation of the function pi ¼ qi½A� Bqi � D

P
j 6¼iqj� � cqi � 1

2
q2

i , with respect to qi, provides the reaction
function
qi ¼ A� c� D
X
j 6¼i

qjðtÞ
" #,

ð1þ 2BÞ. ð5Þ
Solving the system of N best replies summarised in (5) w.r.t. the vector of output levels, one finds the unique
Cournot–Nash equilibrium quantity:5
qCN ¼
ðA� cÞ

½1þ 2Bþ DðN � 1Þ� ; ð6Þ
which is clearly symmetric since firms are ex ante symmetric and the system of reaction functions (5) is lin-
ear in the choice variables.
odel where D is a variable, whose dynamics is driven by the investment efforts of firms devoted to product differentiation is in
and Lambertini (2002).
hortcut would consists in imposing the symmetry conditions qi = qj = q and then solving (5).
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In the problem we are interested here, however, the current price of any good is generally different from
its notional level. The production decisions of firms affect notional prices, but current prices evolve subject
to the existence of price stickiness. We assume that firms choose the quantity to be produced, so that we are
in a Cournot framework. More precisely, each player (i.e., each firm) chooses the path of his control var-
iable qi(t) over time, from the present to infinity, i.e., t 2 [0,1), in order to maximize the present value of
the profit flow, subject to (i) the motion laws regarding the state variables, and (ii) the initial conditions.
Formally, the problem of player i may be written as follows:
max
qiðtÞ

J i ¼
Z 1

0

e�qtqiðtÞ � piðtÞ � c� 1

2
qiðtÞ

� �
dt ð7Þ

s.t.
dpiðtÞ

dt
¼ s A� BqiðtÞ � D

X
j 6¼i

qjðtÞ � piðtÞ
" #

; i 2 ½1;N �; ð8Þ

s.t. pið0Þ ¼ pi;0 > 0; i 2 ½1;N �. ð9Þ
Notice that the number of the state variables in the problem of each player i is equal to N, corresponding to
the price of the N available varieties, while the control variable is one for each player, specifically, the quan-
tity to be produced. The factor e�qt discounts future gains, and the discount rate q is assumed to be con-
stant and equal across firms.

We solve the problem by considering—in turn—the open-loop solution, and the closed-loop memoryless
solution.
3. The open-loop solution

Here we look for the open-loop Nash equilibrium, i.e., we examine a situation where firms commit to a
production plan at t = 0 and stick to that plan forever.

The Hamiltonian function is
HiðtÞ ¼ e�qt � qiðtÞ � piðtÞ � c� 1

2
qiðtÞ

� �
þ ki

iðtÞs A� BqiðtÞ � D
X
j 6¼i

qjðtÞ � piðtÞ
" #(

þ
X
j6¼i

ki
jðtÞs A� BqjðtÞ � D

X
h6¼j

qhðtÞ � pjðtÞ
" #)

; ð10Þ
where ki
iðtÞ ¼ li

iðtÞeqt, and li
iðtÞ is the co-state variable associated by player i to the price of his product, pi(t);

similarly, ki
jðtÞ ¼ li

jðtÞeqt, with li
jðtÞ being the co-state variable associated by player i to the price of the good

j 5 i. As usual, supplementary variables k represent co-states in current value, and are introduce to ease
calculation.

The outcome of the open-loop game is summarised by the following:

Proposition 1. When the open-loop Nash equilibrium solution concept is adopted, a symmetric steady state

exists, where the individual output and the market price are
q1OL ¼
ðsþ qÞðA� cÞ

ðsþ qÞ½1þ Bþ DðN � 1Þ� þ sB
;

p1OL ¼ A� ½Bþ DðN � 1Þ�ðsþ qÞðA� cÞ
ðsþ qÞ½1þ Bþ DðN � 1Þ� þ sB

.

Such a steady state is a saddle.
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Proof. In order to find the open-loop Nash equilibria, we have to solve the following first-order condition:
6 In
oHiðtÞ
oqiðtÞ

¼ 0 ð11Þ
along with the adjoint equations
� oHiðtÞ
opiðtÞ

¼ oki
iðtÞ
ot
� qki

iðtÞ; ð12Þ

� oHiðtÞ
opjðtÞ

¼
oki

jðtÞ
ot
� qki

jðtÞ. ð13Þ
The first order condition and the adjoint equations have to be considered along with the initial conditions
fpið0Þ ¼ pi;0g

N
i¼1 and the transversality conditions, which set the final value of the state and/or co-state

variables:
lim
t!1

ki
iðtÞ � piðtÞ ¼ 0; lim

t!1
ki

jðtÞ � pjðtÞ ¼ 0. ð14Þ
From (11)–(13) we obtain respectively:
qiðtÞ ¼ piðtÞ � c� ki
iðtÞsB� sD

X
j 6¼i

ki
jðtÞ; ð15Þ

oki
iðtÞ
ot
¼ ðsþ qÞki

iðtÞ � qiðtÞ; ð16Þ

oki
jðtÞ
ot
¼ ðsþ qiÞki

jðtÞ; ð17Þ
Eq. (15) can be differentiated w.r.t. time to obtain the dynamics of firm i�s output:
dqiðtÞ
dt
¼ dpiðtÞ

dt
� s B

dki
iðtÞ

dt
þ D

X
j 6¼i

dki
jðtÞ

dt

" #
; ð18Þ
where dpi(t)/dt is given by (1). Therefore the above differential equation may be rewritten as follows:
dqiðtÞ
dt
¼ s A� BqiðtÞ � D

X
j 6¼i

qjðtÞ � piðtÞ
" #

� s B
dki

iðtÞ
dt
þ D

X
j 6¼i

dki
jðtÞ

dt

" #
. ð19Þ
Now we show that a unique symmetric Nash equilibrium exists.6 On the basis of the ex ante symmetry of
firms, we impose pj;0 ¼ p0; qj ¼ q and pj ¼ p for all j 5 i. Then, we also impose ki

j ¼ kother for any j 5 i;
using expressions (16), (17) and (19) becomes
dqiðtÞ
dt
¼ s½A� BqiðtÞ � DðN � 1ÞqðtÞ � piðtÞ�

� s B ðsþ qÞki
iðtÞ � qiðtÞ

� �
þ DðN � 1Þðsþ qiÞkotherðtÞ

� �
. ð20Þ
This amounts to saying that we take all but one firm�s policies as fixed in order to derive the Nash equilib-
rium. To this regard, it is worth stressing that we cannot postulate ki

iðtÞ ¼ kotherðtÞ, since the effect of the
price of the variety produced by each firm on his own profit, is obviously different from the effect of the
price of the varieties produced by the opponents. Note, however, that (20) applies to any firm
i = 1, 2, 3 . . . , N alike. This entails that the system of N equations (20) gives rise to a symmetric Nash
general, other asymmetric equilibria may exist for N > 2, unlike what happens in the static game.
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equilibrium where each firm charges the same price and produces the same output as any of its rivals.
Accordingly, as a further step we also set qi ¼ q and pi ¼ p and ki

i ¼ kown. This gives the following system
of differential equations:
dqðtÞ
dt
¼ dpðtÞ

dt
� sB

dkownðtÞ
dt

� ðN � 1ÞsD
dkotherðtÞ

dt
; ð21Þ

dpðtÞ
dt
¼ s½A� BqðtÞ � DðN � 1ÞqðtÞ � pðtÞ�; ð22Þ

dkownðtÞ
dt

¼ ðsþ qÞkownðtÞ � qðtÞ; ð23Þ

dkotherðtÞ
dt

¼ ðsþ qÞkotherðtÞ. ð24Þ
This means that, for any player, the dynamics of all relevant variables may be described by a system of four
dynamic equations. The system can be written in matrix form as follows:
_pðtÞ
_qðtÞ

_kownðtÞ
_kotherðtÞ

26664
37775 ¼

�s

1

0

0

�s½Bþ DðN � 1Þ�
0

�1

0

0

�sB

ðsþ qÞ
0

0

�ðN � 1ÞsD

0

ðsþ qÞ

26664
37775

pðtÞ
qðtÞ

kownðtÞ
kotherðtÞ

26664
37775. ð25Þ
It is easy to show that a (non-trivial) steady state does exist in this dynamic system. We denote by p1, q1,
k1own; k

1
other the steady state levels of the relevant variables, namely, the price, the output level, and the

co-state variables associated with the own price and with the price of different varieties, respectively. From
Eq. (21) it is immediate to note that if dp/dt = 0, dkown/dt = 0, dkother/dt = 0 hold simultaneously, then
dq/dt = 0. From Eq. (23) we note that dkown/dt = 0 entails k1own ¼ q1=ðsþ qÞ, while from Eq. (24) we note
that dkother/dt = 0 entails k1other ¼ 0. Eq. (22) shows that dp/dt = 0 entails p1 = A � [B + D(N � 1)]q1.
Using Eq. (15) under the symmetry conditions, we obtain
q1OL ¼
ðsþ qÞðA� cÞ

ðsþ qÞ½1þ Bþ DðN � 1Þ� þ sB
. ð26Þ
Note that the solution is unique: in other words, only one symmetric Nash equilibrium does exist in this
game.

Simple substitutions permit us to fully characterize the steady state market allocation under the open
loop information structure:
p1OL ¼ A� ½Bþ DðN � 1Þ�ðsþ qÞðA� cÞ
ðsþ qÞ½1þ Bþ DðN � 1Þ� þ sB

; ð27Þ

k1own ¼
ðA� cÞ

ðsþ qÞ½1þ Bþ DðN � 1Þ� þ sB
. ð28Þ
As a final point, we investigate the stability property of the steady state. We already know that, in the case
of homogenous oligopoly, the steady state is a saddle, completely described by a dynamic system of two
differential equations in two variables, namely price and quantity (see Cellini and Lambertini, 2004). In
the present, more general, setting with a differentiated oligopoly, four variables (and four differential equa-
tions) are necessary to fully characterise the dynamics of the system—even under the particular case of the
symmetric equilibrium. In order to have that the steady state is stable in the saddle point sense, it is suffi-
cient that exactly two out of the four characteristic roots of the Jacobian matrix associated with the dy-
namic system (that is, the Jacobian in system (25)), have a negative real part. This is the case indeed in
the problem at hand. In particular, one characteristic root is (s + q); the expressions of remaining three
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roots are rather heavy: one of them is real and positive; the two remaining roots are complex, with negative
real parts. In sum, two out of four characteristic roots of the Jacobian matrix in (25) are real and positive;
the other two roots have negative real parts, leading to the conclusion that the steady state is a saddle. This
concludes the proof. h

Notice that the present result encompasses the result from the model with product homogeneity.7 Notice
also that the steady state level of production, under the open-loop information structure is larger than its
counterpart in the static Cournot game. This is easily proved, by comparing (26) with (6). Consistently, the
steady state level of price is smaller in the dynamic game as compared to the static game. This result is well
known in the literature (see, e.g., Simaan and Takayama, 1978; Reynolds, 1987; Piga, 2000, inter alia). It
means that the prolonged time of non-cooperative interaction leads to higher levels of production (and
lower prices) as compared to static interaction.

Simple comparative statics exercises on the steady state level of production q1OL lead to the following
results, holding for all N > 1.

(i) oq1OL=oD < 0: the higher is D, that is, the higher is the substitutability among goods (and the lower is
the differentiation) the smaller is the steady state level of production in the symmetric open-loop Nash
equilibrium. The intuition behind this result could be provided by the following argument: a higher
substitutability among varieties means a smaller demand for any individual firm, and lower market-
power. Consequently, the reaction of firms leads to an equilibrium where production is lower.

(ii) oq1OL=os < 0: the lower is the price stickiness (i.e., the larger is s), the smaller is the steady state pro-
duction; put differently, the stickier are the prices, the larger the production in steady state is. This
result is well known in the literature on differential oligopoly games with sticky prices (see also Piga,
2000; Cellini and Lambertini, 2004). A rough intuition for this result is provided by the following
argument: when prices are sticky, the current production levels of firms are weakly effective in moving
current prices; this fact leads firms to high levels of current and future production. On the contrary,
when prices move largely in response to production decisions, firms choose to shrink the output levels.

(iii) o2q1OL=ðosoDÞ > 0: this cross derivative measures how the sensitivity of steady state production to dif-
ferentiation is affected by price stickiness. In this respect, note that the higher is s, i.e., the less sticky
are prices, the higher is the sensitivity of production with respect to differentiation. Since differentia-
tion and price stickiness have the same effect on production, their mutual interaction strengthens the
effect on individual equilibrium output.

Now we examine the effects of a change in D and s on equilibrium profits p1OL.

(a) op1OL=oD < 0: as intuition suggests, ceteris paribus, an increase in product substitutability hampers
profits.

(b) op1OL=os > 0: as the speed of adjustment becomes higher, profits increase.
(c) The cross derivative exhibits the following property:
7 In
in the
o2p1OL

osoD
?0 for all D7

qþ sþ 2Bðs� qÞ
2ðN � 1Þðqþ sÞ . ð29Þ
The above results can be interpreted as follows. First, it is worth noting that the speed of adjustment and
product differentiation work in the same direction. Second, in general, firms� profits benefit from having
fact, when D = B = 1 the level of q1OL given by Eq. (26) of the present paper coincides with the steady state level of production
homogenous oligopoly model presented by Cellini and Lambertini (2004)—see in particular their Eq. (12), p. 307.
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flexible prices. This benefit is enhanced by market power, which may obtain through either a high degree of
concentration or a high degree of product differentiation. Therefore, the positive effect exerted by D on
op1OL=os increases for sufficiently low values of D and N. As N becomes larger, the critical threshold of
D in (29) decreases, so that there surely exists a critical number of firms beyond which the behaviour of
op1OL=os w.r.t. D becomes non-monotone.
4. The memoryless closed-loop solution

Under the closed-loop information structure, firms do not precommit on any path and their strategies at
any instant may depend on all the preceding history. In this situation, the information set used by firms in
setting their strategies at any given time is often simplified to be only the current value of the state variables
at that time. In this section we rely on the so-called closed-loop memoryless Nash equilibrium solution con-
cept, under which players take into account the effect of the current level of state variables on the controls
in every instant of time (see Basar and Olsder, 1982). This equilibrium is strongly time consistent.

The outcome of the memoryless closed-loop game is summarised by the following:

Proposition 2. When the closed-loop memoryless Nash equilibrium solution concept is adopted, a symmetric
steady state exists, where the individual output and the market price are
q1CL ¼
Wðsþ qÞðA� cÞ

W½ðsþ qÞð1þ Bþ DðN � 1ÞÞ þ sB� � ðN � 1Þs2D2
;

p1CL ¼ A� ½Bþ DðN � 1Þ�q1CL;
where W � q + s(1 + B + D(N � 2)). Such a steady state is a saddle.

Proof. The relevant Hamiltonian function is still (10), while the first order condition and the adjoint equa-
tions for the player i are as follows:
oHiðtÞ
oqiðtÞ

¼ 0; ð30Þ

� oHiðtÞ
opiðtÞ

�
X
h 6¼i

HiðtÞ
oqhðtÞ

oq�hðtÞ
opiðtÞ

¼ oki
iðtÞ
ot
� qki

iðtÞ; ð31Þ

� oHiðtÞ
opjðtÞ

�
X
h 6¼i

HiðtÞ
oqhðtÞ

oq�hðtÞ
opjðtÞ

¼
oki

jðtÞ
ot
� qki

jðtÞ. ð32Þ
Also in this case the first order condition and the adjoint equations have to be considered along with the
initial conditions fpið0Þ ¼ pi;0g

N
i¼1 and the transversality conditions (14).

The terms
oHiðtÞ
oqhðtÞ

oq�hðtÞ
opjðtÞ

ð33Þ
appearing in (31) and (32) capture strategic interaction, in any instant of time, through the feedback from
states to controls, which is by definition absent under the open-loop solution concept. Whenever the expres-
sion in (33) is zero for all j, then the closed-loop memoryless equilibrium collapses into the open-loop Nash
equilibrium (see, e.g., Driskill and McCafferty, 1989); this is not the case in the present setting.

In order to solve this problem, we take into account that
oq�hðtÞ
opjðtÞ

¼ 1 iff h = j while
oq�hðtÞ
opjðtÞ

¼ 0 otherwise.
From (30)–(32) we obtain respectively:
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qiðtÞ ¼ piðtÞ � c� ki
iðtÞsB� D

X
j 6¼i

ki
jðtÞs; ð34Þ

oki
iðtÞ
ot
¼ ðsþ qiÞki

iðtÞ � qiðtÞ; ð35Þ

oki
jðtÞ
ot
¼ ðqi þ sÞki

jðtÞ þ sDki
iðtÞ þ D

X
h6¼i;j

ki
hðtÞsþ sBki

hðtÞ. ð36Þ
Now, as a shortcut, we introduce the symmetry assumptions qi = qj = q, and pi = pj = p, in order to
focus on symmetric equilibrium.8 Moreover, we pose ki

i ¼ kown, and we postulate the symmetry assumption
ki

j ¼ ki
h ¼ kother for any j 5 i, h 5 i. These assumptions permit us to write Eq. (34) as follows:
qðtÞ ¼ pðtÞ � c� sBkownðtÞ � sDðN � 1ÞkotherðtÞ. ð37Þ

If we consider Eq. (37) and substitute for kown and kother the expressions deriving by integration over time of
(35) and (36) respectively, we obtain the optimal rule followed by a player under the symmetric Nash equi-
librium. It is worth mentioning that integrating (35) and (36) over time provides the expressions of kown(t)
and kother(t) respectively; in both these functions q(t) enters linearly and p(t) does not appear. Consequently,
expression (37) continues to be a function connecting q(t) to p(t) in a linear way, even after the substitution
for kown(t) and kother(t) . Put differently, the closed-loop rule followed by any player connects his control
variable with the state variable linearly.9 This is consistent with the linear-quadratic structure of the game,
and with a quadratic value function for any player.

In the symmetric steady state the following relationships hold:

(i) from (31): k1own ¼ q1=ðqþ sÞ;
(ii) from (32): k1other ¼ �sDk1own=½qþ sð1þ Bþ DðN � 2ÞÞ�;

(iii) from the dynamic constraint: p1 = A � [B + D(N � 1)]q1.

Subsequent substitutions into Eq. (37) lead to find the following relation holding in steady state:
q1 ¼ A� Bq1 � DðN � 1Þq1 � c� sBq1

ðqþ sÞ þ
s2D2ðN � 1Þq1

½qþ sð1þ Bþ DðN � 2ÞÞ�ðqþ sÞ ð38Þ
so that the steady state level of production, under the symmetric closed-loop memoryless Nash equilibrium
turns out to be
q1CL ¼
Wðsþ qÞðA� cÞ

W½ðsþ qÞð1þ Bþ DðN � 1ÞÞ þ sB� � ðN � 1Þs2D2
;

W � qþ sð1þ Bþ DðN � 2ÞÞ.
ð39Þ
In the remainder of the section we discuss, in turn, the dynamic properties of the steady state, and the
role of the parameters in determining the steady state production under the closed-loop information struc-
ture, as compared to the open-loop and the static game Nash equilibria.

As far the first point is concerned, the dynamic system (under symmetry) can be written in matrix form
as follows:
in the previous section, one could alternatively take as given firm j�s policy for all j 5 i, and then focus on the optimal behaviour
i in isolation. It can be easily shown that the two procedures lead to the same result.

member that we are confining our attention to a symmetric equilibrium, so that the price is the same across goods. In general,
symmetric equilibria may exist, in which the closed-loop rule connects the control variable of each player with the vector of state

les, i.e., with the vector of the price of all goods.
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_pðtÞ
_qðtÞ
_kownðtÞ
_kotherðtÞ

26664
37775 ¼ h

pðtÞ
qðtÞ

kownðtÞ
kotherðtÞ

26664
37775; ð40Þ

h ¼

�s

1

0

0

�s½Bþ DðN � 1Þ�
0

�1

0

0

�sB

ðsþ qÞ
0

0

�ðN � 1ÞsD

0

½sþ qþ sBþ DðN � 2Þ�

26664
37775.
Also in this case, it is possible to find the characteristic roots of the Jacobian matrix in (40), and it is
possible to check that exactly two out of the four characteristic roots have negative real parts. Therefore,
the steady state is stable in the saddle point sense—that is, given the initial conditions, the steady state is
reached only for one appropriate combination of the control variable and co-state variables, at the initial
time.10 This concludes the proof. h

Simple comparative statics exercises on the steady state level of production q1CL lead to the following
points, confirming all the substantial conclusions about the steady state production under the open-loop
information structure: for all N > 1, (i) oq1CL=oD < 0; (ii) oq1CL=os < 0; (iii) o2q1OL=ðosoDÞ > 0. The effects
of a change in D and/or s on equilibrium profits are qualitatively the same as in the open-loop case.

In this oligopoly with differentiated goods, like in the homogenous good case, the steady state level of
production turns out to be larger under the closed-loop memoryless solution, than under the open-loop,
as the comparison between Eqs. (26) and (39) makes clear. Both levels are larger than the production of
the static Cournot game. This fact can be explained on the following grounds. The closed-loop output level
is higher than the open-loop output level because, taking into account feedback effects, each firm tries to
preempt the rivals. Since this holds for all firms alike, the outcome is that the closed-loop steady state pro-
duction exceeds the open-loop steady state production.11 In turn, the open-loop steady state output exceeds
the static (or myopic) output because in the static game there is no time for adjustment and therefore firms
have no way of trying to overproduce in order to preempt the rivals.

As a consequence, from the firms� viewpoint, the static situation (or, a situation where firms are myopic)
is the most profitable one. On the contrary, the steady state allocation in the closed-loop memoryless equi-
librium is socially preferred both to the open-loop steady state and to the static equilibria.

Finally, as the number of firms becomes infinitely large, optimal individual output tends to zero indepen-
dently of the solution concept. As the market becomes perfectly competitive, open-loop and closed-loop
steady state solutions coincide with the static Cournot–Nash solution, which is itself reproducing the per-
fectly competitive outcome.
5. The social optimum

Here we examine the socially optimal allocation, where a benevolent planner sets production plans so as
to maximise the discounted social welfare, defined as the sum of industry profits and consumer surplus:
is dynamic feature of the steady state is consistent with the analogous result in the particular case of homogenous oligopoly,
the 2 · 2 dynamic system presents a steady state, which is a proper saddle (see Cellini and Lambertini, 2004, Section 5).
is is usually observed when firms control variables are output levels, investment levels, etc. (see, e.g., Reynolds, 1987).
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SWðtÞ � PðtÞ þ CSðtÞ ¼
XN

i¼1

piðtÞ þ
1

2

XN

i¼1

½A� piðtÞ�qiðtÞ
under the set of constraints given by state Eq. (1) and the same initial and transversality conditions as in the
previous sections. The outcome is summarised by:

Proposition 3. Under social planning, the steady state levels of individual output and price are
q1SP ¼
2ðsþ qÞðA� cÞ

½2þ Bþ DðN � 1Þ�qþ 2½1þ Bþ DðN � 1Þ�s ;

p1SP ¼
A½2sþ 2cðBþ DðN � 1ÞÞðsþ qÞ þ ð2� B� DðN � 1ÞÞq�

½2þ Bþ DðN � 1Þ�qþ 2½1þ Bþ DðN � 1Þ�s .
Such a steady state is a saddle.

Proof. The Hamiltonian function of the social planner is
HSPðtÞ ¼ e�qt �
XN

i¼1

qiðtÞ � piðtÞ � c� 1

2
qiðtÞ

� �
þ ½A� piðtÞ�qiðtÞ

2

� �(

þ kiðtÞs A� BqiðtÞ � D
X
j 6¼i

qjðtÞ � piðtÞ
" #

þ
X
j 6¼i

kjðtÞs A� BqjðtÞ � D
X
h6¼j

qhðtÞ � pjðtÞ
" #)

;

ð41Þ
where ki(t) = li(t)e
qt, and li(t) is the co-state variable associated by the planner to the price of firm i�s prod-

uct. The first order conditions are12
oHSPðtÞ
oqiðtÞ

¼
A� 2qiðtÞ � 2cþ piðtÞ � 2 BskiðtÞ þ Ds

P
j 6¼ikjðtÞ

h i
2

¼ 0; ð42Þ

� oHSPðtÞ
opiðtÞ

¼ okiðtÞ
ot
� qkiðtÞ ()

okiðtÞ
ot
¼ kiðtÞðsþ qÞ � qiðtÞ

2
. ð43Þ
Now, adopting the symmetry conditions qi(t) = q(t), pi(t) = p(t) and ki(t) = k(t), we obtain from (42)
kðtÞ ¼ A� 2qðtÞ � 2cþ pðtÞ
2s½Bþ DðN � 1Þ� ð44Þ
and
qðtÞ ¼ A� 2cþ pðtÞ � 2skðtÞ½Bþ DðN � 1Þ�
2

. ð45Þ
The latter expression can be differentiated w.r.t. time to yield
dqðtÞ
dt
¼ dpðtÞ=dt � 2s½Bþ DðN � 1Þ� � dkðtÞ=dt

2
; ð46Þ
r brevity, we omit the indication of exponential discounting.
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which, after straightforward substitutions using (1), (43) and (44), simplifies as follows:
dqðtÞ
dt
¼ 1

2
fA� pðtÞ þ ½Bþ DðN � 1Þ�Cg; ð47Þ
where
C � ðs� 1ÞqðtÞ � ðA� 2cþ pðtÞ � 2qðtÞÞðsþ qÞ
Bþ DðN � 1Þ . ð48Þ
Then, solving the system {dp(t)/dt = 0; dq(t)/dt = 0} w.r.t. individual price and output, we obtain their
steady state values at the social optimum:
q1SP ¼
2ðsþ qÞðA� cÞ

½2þ Bþ DðN � 1Þ�qþ 2½1þ Bþ DðN � 1Þ�s ;

p1SP ¼
A½2sþ 2cðBþ DðN � 1ÞÞðsþ qÞ þ ð2� B� DðN � 1ÞÞq�

½2þ Bþ DðN � 1Þ�qþ 2½1þ Bþ DðN � 1Þ�s .

ð49Þ
Finally, examining the Jacobian matrix of this problem, it is easily checked that the pair ðp1SP; q
1
SPÞ identifies

a saddle point. This is omitted for brevity, as the pertaining procedure is analogous to that illustrated in the
previous sections. h

Additionally, it can be established that (i) oq1SP=oD < 0; (ii) oq1SP=os < 0 for all N > 1, while
o
2q1SP

oDos
/ 2s½Bþ DðN � 1Þ � 1� þ q½Bþ DðN � 1Þ � 2� ð50Þ
may take either sign. By plugging the pair ðp1SP; q
1
SPÞ into the social welfare function, we obtain the steady

state welfare level at the first best
SW1
SP ¼

2Nðsþ qÞðA� cÞ2½qþ ð1þ Bþ DðN � 1ÞÞs�
½ð2þ Bþ DðN � 1ÞÞqþ 2ð1þ Bþ DðN � 1ÞÞs�2

; ð51Þ
which exhibits the following property:
oSW 1
SP

os
¼ 2Nq2ðA� cÞ2ðBþ DðN � 1ÞÞ2

½ð2þ Bþ DðN � 1ÞÞqþ 2ð1þ Bþ DðN � 1ÞÞs�3
> 0. ð52Þ
That is:

Remark 1. At the first best, the steady state social welfare level monotonically increases in the speed of
price adjustment.

It can also be shown that oSW 1
SP=oD < 0 (as we know from the static oligopoly models with product dif-

ferentiation), while o2SW 1
SP=oDos may take either sign.

More importantly, at this point we can build upon the ranking of q1SP; q
1
OL and q1CL in order to assess the

distortionary effect caused by oligopolistic interaction on the welfare performance of the market. In the
dynamic setup, the relevant per-firm output level at the subgame perfect equilibrium is q1CL > q1OL for all
admissible N and s. Therefore, the dynamic game highlights a reassuring property of the (subgame perfect)
Cournot–Nash equilibrium, namely that of reducing indeed the welfare loss brought about by the profit-
seeking behaviour of firms, as compared to what we are accustomed to believe according to the static
approach. This produces our final result:

Remark 2. Given that q1CL > q1OL > qCN, the welfare loss observed at the subgame perfect equilibrium of
the differential game is always smaller than the one associated with the static equilibrium.
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The above claim, in a sense, casts a shadow upon the reliability of assessments based upon a well known
static oligopoly model. Yet, reading it from a more positive angle, it says that the overproduction resulting
from dynamic oligopolistic interaction has a desirable effect on welfare, that cannot be grasped through a
merely static analysis.
6. Concluding remarks

In this paper we have investigated the properties of a dynamic oligopoly game with sticky prices and
differentiated products. It is important to stress that the rigidities we have dealt here with, are real rather
than nominal, provided that we have taken a partial equilibrium approach, with sticky relative prices.

We have shown that the dynamic rule governing the price motion (and in particular the degree of price
stickiness) affects the final allocation, i.e., the steady state under the Nash equilibrium of the dynamic game.
In particular two properties are worth mentioning: (i) in the (subgame perfect) closed-loop memoryless
Nash equilibrium a steady state exists, which is stable in the saddle point sense, where the production is
larger and the price is lower as compared to the open-loop steady state solution; (ii) irrespective of the equi-
librium concept one adopts, in the dynamic framework, the steady state output levels and price levels are,
respectively, higher and lower then their counterparts in the static game. Property (i) can be reformulated
by saying that, if firms are unable to initially commit to a given output plan for the whole time horizon,
then subgame perfection entails overproduction (for analogous results see Spence, 1979; Reynolds,
1987). Property (ii) suggests that the dynamic nature of interaction leads forms to over-produce, as com-
pared to the Nash equilibrium of a static interaction.

The above mentioned results are analogous with the findings from the homogenous oligopoly model. In
the present paper, additional results have been found, concerning the effects of the differentiation among
the goods produced by firms upon steady state allocations. Under both the open-loop and the closed-loop
solution concepts, the higher is the substitutability among goods, the lower is the steady state level of pro-
duction; the tougher is the price stickiness, the higher the steady state level of production. Under this
respect, the degree of price stickiness and the degree of product differentiation exert the same qualitative
effects on the steady state output level. Moreover, the degree of product differentiation interacts with the
sensitivity of steady state profits to price stickiness. In particular, if the number of firms is low enough
and products are sufficiently differentiated, an increase in substitutability enhances the positive effects of
a higher speed of price adjustment on profits.

The welfare analysis has shown that the distortion associated with the dynamic oligopoly game is always
lower than it appears when judging from the static version of the same model.
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