1) Introduction
 a) External Advisee Committee
 i) Dr. Kornel Kerenyi
 J. Sterling Jones Hydraulics Research Laboratory, Turner-Fairbank Highway
 Research Center, Federal Highway Administration
 ii) Keith Ferrell
 Missouri Department of Transportation (MoDOT)
 iii) Dr. Huimin Mu
 City of San Jose
 iv) Larry Olson
 Olson Engineering
 v) William Porter
 WFS Defense
 vi) Ross Johnson (not present due to schedule conflict)
 Geometrics

2) Overview of Project
 a) Project Duration
 Two years
 b) Funding Level
 i) $500,000 from US DOT RITA (cash)
 ii) $350,000 from Mo DOT (in-kind)
 iii) $166,041 from Missouri S&T (cash + in-kind)
 c) Goal
 i) Develop new scour monitoring devices: passive and active smart rocks
 ii) Integrate scour monitoring and mitigation into a rugged system
 d) Application Scenarios
 i) Real-time max scour depth monitoring with smart rocks
 ii) Real-time riprap countermeasure effectiveness monitoring with smart rocks
 e) Technical Approach
 The proposed remote sensing technology involves passive and/or active sensors
 embedded in rocks or reinforced concrete blocks, both referred to as smart rocks, and
 magneto-inductive or acoustic communications for a real-time engineering evaluation
and prediction of bridge scour on a Geographic Information System platform. For application scenario #1, smart rocks are deployed around the perimeter of a pier foundation. They will sink into the scour hole as developed. With deposit refilling or not, the smart rocks can give the maximum scour depth, a critical data for engineering design and assessment of bridge scour. For application scenario #2, together with natural rocks, smart rocks are not only distributed around a bridge foundation for scour mitigation but also represent the process of bridge scour as they are washed away.

3) Application parameter ranges for bridge scour monitoring
 a) Horizontal and vertical movement accurate to within 0.5 meters
 b) Transmission distance: 5-30 meters

4) Electronics parameter for smart rock design
 a) Data speed
 i) Gates transmit data every 15 minutes
 ii) Small flashy streams need hourly data transfers during flood conditions
 iii) In flood conditions transmit data as needed, more frequently than in calm river conditions

5) Potential implementation challenges and solutions with smart rocks
 a) Determine best shape to prevent wash away
 i) Sphere/octagonal shape to monitor max scour
 ii) Natural rock shape for scour mitigation
 b) Determine how to place smart rocks
 i) Divers
 ii) Drop rocks from boat
 iii) Drops rock from boat and guide with string/chain

6) Others
 a) Battery life
 i) Battery life estimated to last 15 years
 ii) Life expectancy changes based on the number of data transmissions
 iii) Make more frequent measurements during flood conditions and less out of flood conditions to preserve battery life
 b) Lab vs. field smart rock
 i) No problem to make lab and field scale magnetic passive smart rock
 ii) More expense and time involved in making both lab and field scale acoustical smart rock
 c) Lab test accuracy
 i) Function of many variables
 ii) Need to do many lab tests to determine the minimum movement measured in the lab