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1 Introduction

Multi-server queues appear in a variety of systems such as airports, factories,
and hospitals. There is naturally significant research interest in analyzing such
queues and quantifying their behavior. Two popular approaches for their per-
formance evaluation are closed-form approximations and discrete-event sim-
ulation. An advantage of closed-form approximations is that one can plug in
values of inputs into their formulas for performance evaluation. In contrast, for
discrete-event simulations, one needs expensive software and exact distribu-
tions, and, as we shall discuss below, simulations can become very slow as the
number of servers increases. Therefore, closed-form evaluation of multi-server
queues remains an important problem.

The most general version of this problem is referred to as the GI/G/k or
G/G/k queue (see Appendix for basic queueing notations), which is typically
studied under the following assumptions:

A1. The inter-arrival time and the service time are allowed to have any given
distribution (i.e., are generally distributed) and k, which exceeds 1, denotes
the number of servers in parallel.

A2. There is only one waiting line, i.e., the queue has a single channel.
A3. Customers are served on a first come first served basis.
A4. The waiting line capacity is infinite.

We make two additional assumptions about the G/G/k queue for this
paper:

A5. The traffic intensity, i.e., the proportion of busy time for the servers, lies
between 0.5 and 0.8. This condition is often described as medium traffic.

A6. The service time has a double-tapering distribution, which is defined
herein as one whose probability density function is an increasing function
from the minimum value to the mode and a decreasing one from the mode
to the maximum value. Such a double-tapering distribution is hence clearly
unimodal. Examples of such distributions are triangular, gamma, Erlang,
Weibull, and beta, among others.

Exact or approximate procedures (or formulas) have generally eluded the
G/G/k queue. In general, non-Poisson arrivals make the analysis of queues
far more complicated than the case of Poisson arrivals, but they have been
considered more recently in the literature (Jain et al. 2020; Chydzinski 2020)
due to the fact that non-Poisson arrivals are common in real-world settings.
See Kimura (1994), Kimura (1995), Whitt (1993), Medhi (2003), Azadeh et al.
(2018), and Yang et al. (2021) for analysis of such queues. For more recent
examples of analysis and applications of multi-server queueing models, see
Brandwajn and Begin (2016), Tadakamalla and Menascé (2017), and Khayyati
and Tan (2021). Specific examples of G/G/k queues with non-Poisson arrivals
in the real world include the following: flow shops in manufacturing systems
(Altiok 2012), where there are multiple parallel machines (see Fig. 1), airport
queues (Mao and Wu 2017), where Identification Documents (IDs) of travel-
ers are checked by Transportation Security Administration (TSA) agents (see
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Fig. 2), and hospitals (Raffensperger et al. 2020) with multiple beds in Inten-
sive Care Units (ICUs) that are equipped with ventilators (see Fig. 3). Other
examples include packet switching in electronic communication (Hluchyj and
Karol 1988; Zhang and Baillieul 2013; Roy et al. 2021). Under the so-called
heavy traffic condition, i.e., when the traffic intensity exceeds 0.8, the approxi-
mation in Sakasegawa (1977) for G/G/k queues is known to be fairly accurate
(Robinson and Chen 2011). However, its performance under medium traffic
(Assumption A5) is known to be unsatisfactory (Hubing 1984).

For the so-called M/G/k queue, which is a well-studied multi-server queue
with k servers, the arrival process is Poisson and the service time can have
any given distribution. Existing approximations from the literature have been
known to work well for M/G/k queues (Whitt 1993), regardless of the traffic
intensity. However, the M/G/k model is not applicable when the exponential
distribution does not hold for the inter-arrival time.

The following evidence points to real-world systems where the M/G/k
model does not work. In manufacturing systems, the inter-arrival time for a
job is often gamma distributed (Benjaafar et al. 2004), while the service time
(production time) can have the gamma distribution in case the machine is
failure-prone that leads to high variability (Das and Sarkar 1999). The mate-
rial in the Appendix of the book of Baker and Trietsch (2013) clearly states
that the production time on machines is not likely to have the exponential
distribution. See also Burgin (1975), Muralidhar et al. (1992), and Savsar and
Choueiki (2000), which provide extensive evidence of the inter-arrival times
and service (production) times carrying the gamma distribution in manufac-
turing systems, rather than the exponential distribution. For airports, em-
pirical evidence suggests that inter-arrival times commonly have the gamma
distribution (Khadgi 2009; Suryani et al. 2010). For the ID checking queue at
a TSA security line or at other service counters in an airport, one typically
encounters a human server, whose service time is often modeled via the tri-
angular distribution that approximates the beta distribution (Johnson 1997).
Finally, Williford et al. (2020) make the case for using the gamma distribution
rather than the exponential for the length of stay in a hospital during a serious
illness. Thus, clearly, there is a need for studying multi-server queues where
the inter-arrival time is not exponentially distributed and the service time is
either gamma or triangular (i.e., Assumption A6).

Need for Approximations: When distributions of inter-arrival and service times
are available, under restrictive assumptions on the nature of the system, te-
dious analytical procedures leading to closed-form approaches, involving Laplace
transforms (Langaris 1986; Eckberg Jr 1977), embedded Markov chains (Nadara-
jah 2008), or phase-type distributions (Altiok 2012), can also be used for per-
formance evaluation. When distributions are available, an alternative route
is to use discrete-event simulation software (Law 2014), although the latter
requires expensive software and becomes sluggish as k increases beyond 10.
After simulation became a popular approach in the 1980s, research interest in
closed-form approaches waned.
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Fig. 1 The queue that forms in front of a parallel set of griding machines for jobs that
arrive from heat treatment in a manufacturing plant

Fig. 2 An airport queueing system in which in the first stage where agents check identifi-
cation documents of the customers is a multi-server queue

When the analyst is able to derive the distributions of the inputs and has
access to a simulation software, or is able to use exact analytical procedures,
the approximation suggested in this paper will not be necessary. However, in
the real world, means and variances of inter-arrival and service times (inputs)
can be estimated with less effort; it is in those circumstances that an approxi-
mation based on the mean and variance of the inputs, such as the one proposed
here, has great practical value. Furthermore, simulation software are expen-
sive, while a closed-form formula within a spreadsheet software is cheaper and
easier to use. Several specific scenarios in which such approximations are useful
are described below.
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Fig. 3 The queue in a hospital that needs ICU beds is typically virtual within the computer
system, but arriving patients assemble in the waiting areas while they are triaged by a nurse

First, to meet the needs of automated decision-making within the so-called
Cyber-Physical System (CPS) in the era of Industry 4.0 (Tao et al. 2018),
methods based on two moments are likely to be more attractive, as fitting
distributions requires additional computational effort in terms of histogram
fitting, analyzing different distributions, and finally employing a goodness-of-
fit test, e.g., the Chi-square test and the Kolmogorov-Smirnov test, to select
the best fit. In a CPS, decision-making and controls for hardware are exercised
automatically through software written within so-called digital twins. In such
systems, the requirement of using queueing models remains critical (Sinha
and Roy 2019), and therefore models rooted in means and variances will re-
main attractive because they can be encoded into in-built functions within the
hardware of digital twins for rapid computations and control.

Second, in traditional, computerized MRP (Materials Requirements Plan-
ning) systems, the proposed approximation based on means and variances of
inputs will be useful in estimating lead times approximately. Since produc-
tion data change frequently, determining distributions is typically ruled out
and queueing estimates based on means and variances are popular (Askin and
Goldberg 2002). Further, rough estimates of lead times are needed for deter-
mining the number of kanbans (Monden 1983), as well as for designing machine
capacity (Heragu 2018); sub-optimally designed machine capacity leads to long
lead times and increased operational costs (De Treville et al. 2004).

Third, large airports that witness major fluctuations in their demand-
arrival patterns during the day use queueing models to determine server capaci-
ties — integrating queueing-performance formulas into numerical optimization
techniques (Hafizogullari et al. 2003; Manataki and Zografos 2009) to mini-
mize queue waiting times. Finally, hospitals serving critical patients in need
of ventilators, e.g., during a pandemic where conditions can alter dramatically
every hour, contain G/G/k queues. The ongoing COVID-19 pandemic is mak-
ing it critical to determine the optimal number of ICU beds equipped with
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ventilators to save lives; for optimization, these systems need to be modeled
as multi-server queuing systems (Raffensperger et al. 2020).

In summary, simple closed-form approximations based on only the mean
and variance of inputs (inter-arrival and service times), which can be exe-
cuted in spreadsheet software or digital twins, continue to hold a special ap-
peal in performance evaluation. Furthermore, even when exact techniques are
available, simple approximations with a “back-of-the-envelope” nature (Whitt
1993) and the ability to perform “rough-cut optimization” (Papadopoulos and
Heavey 1996) are attractive in practical, real-world settings. Such approxima-
tions are generally not very accurate; however, they can be used for rough-cut
capacity optimization of machines. As such, even if the approximations are not
very accurate, they rapidly provide usable estimates of lead times that help in
quick decision-making.

Contributions of this Paper: The new approximation in this paper deviates
from the literature as follows. It is based on an aggregation procedure of
a G/G/1 queue and not on the M/M/k formula, unlike the trend in much
of the literature (Lee and Longton 1957; Kimura 1986; Shore 1988; Page
1982; Sakasegawa 1977); see Appendix for definitions of various multi-server
queues, including M/M/k. It is shown through extensive numerical testing
that the new approximation exhibits more accurate behavior than that of ex-
isting G/G/k approximations from the literature (Marchal 1985; Kraemer and
Langenbach-Belz 1976). The new approximation is also benchmarked against
simulation, as the latter has been commonly used in the literature for that
purpose (Altiok 2012; Rabta 2013). The aggregation procedure within our
proposed approximation first condenses a multi-server queue into a fictitious
single-server queue, via a correction factor for the squared coefficient of varia-
tion of the service time, and then retrieves the original single-server queue via
another correction factor. Furthermore, the new approximation is developed
for Assumptions A5 and A6, which are commonly true of conditions found in
many real-world systems, but not studied as widely in the literature. Finally,
the new approximation is based on only the mean and variance of two key
queueing inputs, the inter-arrival time and the service time, which makes it
suitable for automatic computations in manufacturing systems and in airports
and hospitals where conditions can change rapidly.

The rest of this article is organized as follows. Theoretical background
material and notations for the research in this paper are provided in Section 2.
Section 3 details the methodology underlying the new approximation. Section
4 presents numerical results obtained from using the new methodology and
the benchmarking exercises. Finally, Section 5 presents the conclusions drawn
from this research, as well as directions for future research.
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2 Theoretical Background

The section begins with mathematical notation and then discusses two bench-
marking models.

2.1 Notation

– k: Number of servers in the single-channel queue
– λ = 1/E[inter-arrival time]: Mean rate of arrival
– µ = 1/E[service time]: Mean service rate
– ρ = λ/(kµ): Overall server utilization

– L
G/G/k
q : Mean number of customers in a G/G/k queue

– W
G/G/k
q : Mean waiting time in a G/G/k queue

– σ2
a: Variance of the inter-arrival time

– σ2
s : Variance of the service time of any server

– C2
a = (σ2

a)/(1/λ)2: Squared coefficient of variation in the inter-arrival time
– C2

s = (σ2
s)/(1/µ)2: Squared coefficient of variation in the service time of

any server

From Little’s law:
Lq = λWq. (1)

Two approximations, described in the following two subsections, have been
selected for benchmarking of the new approximation. The reason for selecting
them is: they also rely on only the mean and variance of the inter-arrival and
service times, making them comparable. Further, both of these approximations
are rooted in the so-called M/M/k model, which has been used widely in the
literature to develop approximations for multi-server queues.

2.2 Marchal Approximation

Marchal (1976) developed an approximation for G/G/1 queues that was com-
bined with the exact M/M/k formula to develop an approximation for G/G/k
queues (Marchal 1985). HisG/G/1 approximation, which holds under Assump-
tions A1: A4, is shown below:

LG/G/1q =
ρ2(1 + C2

s )(C2
a + ρ2C2

s )

2(1 − ρ)(1 + ρ2C2
s )

. (2)

The existing exact formula for an M/M/k queue (Ross 2014) is:

LM/M/k
q =

P0(λµ )kρ

k!(1 − ρ)2
(3)

where

P0 =
1

(kρ)k

k!(1−ρ) +
∑k−1
m=0

(kρ)m

m!

. (4)
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Note that P0 above denotes the probability that there are zero customers in the
system. Based on his G/G/1 approximation (given in Equation (2)), Marchal
(1985) developed a correction factor, denoted by CF , that when applied to
the M/M/k formula works as an approximation for the G/G/k queue. The
correction factor is given by:

CF =
(1 + C2

s )(C2
a + ρ2C2

s )

2(1 + ρ2C2
s )

. (5)

Combining Equations (3) and (5), one has the following approximation (Mar-
chal 1985) for the G/G/k queue:

LG/G/kq = CF · LM/M/k
q =

(1 + C2
s )(C2

a + ρ2C2
s )

2(1 + ρ2C2
s )

· P0(λ/µ)kρ

k!(1 − ρ)2
, (6)

where P0 is as defined in Equation (4). The above approximation will be
referred to as the MAR (short for Marchal) approximation.

2.3 Kraemer and Langenbach-Belz Approximation

Kraemer and Langenbach-Belz (1976) developed the following approximation
for the G/G/1 queue, which holds under Assumptions A1: A4:

LG/G/1q =
ρ2(C2

a + C2
s )

2(1 − ρ)
g (7)

where

g = exp

(
−2(1 − ρ)(1 − C2

a)2

3ρ(C2
a + C2

s )

)
when C2

a ≤ 1; (8)

g = exp

(
(1 − ρ)(1 − C2

a)

C2
a + 4C2

s

)
when C2

a > 1. (9)

For benchmarking his own approximation, Marchal (1985) suggested an alter-
native correction factor from the single-server approximation in Kraemer and
Langenbach-Belz (1976), which was:

CF =
g(C2

a + C2
s )

2
(10)

in which g is as defined in Equations (8)-(9). This leads to the following ap-
proximation for the G/G/k queue:

LG/G/kq = CF · LM/M/k
q =

g(C2
a + C2

s )

2
·
P0(λµ )kρ

k!(1 − ρ)2
(11)

where P0 is as defined in Equation (4). The above G/G/k approximation
will be referred to as the K-L-B (short for Kraemer and Langenbach-Belz)
approximation in this paper.
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Fig. 4 Schematic showing the aggregation scheme in M-SAP that aggregates the k servers of
a G/G/k queue into one server to generate an aggregated single-server queue with modified
mean and variance of the service time, as well as the retrieval to obtain the original G/G/k
queue

3 Multi-Server Aggregation Procedure (M-SAP)

The underlying principle in the new multi-server aggregation procedure, re-
ferred to as M-SAP for short, is to aggregate (or transform) a single-channel,
multi-server queue into a hypothetical single-server queue with the same uti-
lization, develop an estimate for the squared coefficient of variation in the
hypothetical single-server queue, and then employ this estimate within an ex-
isting approximation for G/G/1 queues to evaluate the original multi-server
queue’s key performance metrics, i.e., the expected waiting time and the ex-
pected number in the queue. This last step is performed via a correction factor
that retrieves the original multi-server queue. Steps in M-SAP are outlined as
follows in order to first provide an overview of this procedure:

Step 1: (Aggregation) The G/G/k will be aggregated into a hypothetical
G/G/1 queue, i.e., the mean and variance of the service time of this hy-
pothetical G/G/1 queue will be computed via an aggregation procedure,
whose details are provided below in Subsection 3.1.

Step 2: (Single-Server Approximation) The expected queue length of the
hypothetical G/G/1 queue, denoted by L̂q, will be computed using either
the MAR or the K-L-B approximation and the aggregation procedure of
Step 1; the details are provided below in Subsection 3.2.

Step 3: (Retrieval) The expected queue length (Lq) of the original G/G/k
queue will be obtained via details shown in Subsection 3.3.

Fig. 4 depicts the main idea underlying the M-SAP approximation procedure.
In what follows, the three steps in the procedure are described in detail.
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3.1 Step 1

The objective here is for the service process in the aggregated single-server
queue to behave in a manner similar to that in the original multi-server queue.
To this end, a new squared coefficient of variation for the service time of the
aggregated queue, Ĉ2

s , is proposed. The intuition underlying the aggregation is
that approximations in queueing networks are often handled via modifications
of the squared coefficients of variation of either the service time or inter-arrival
time (Buzacott and Shanthikumar 1993), which should ideally lead to balanced
behavior in the final result. By “balanced behavior,” one refers to behavior in
the middle of the spectrum of values obtained of the mean queue length,
rather than at the extremes. For instance with the two variables, the squared
coefficients of variation of inter-arrival and service times, both variables at the
same level (high or low) would represent the middle of the spectrum. On the
other hand, when the two variables are at conflicting levels, one would obtain
behavior at the two ends of the spectrum: one variable at a high level and the
other at a low level would represent one extreme of the spectrum, while one at
a low level and the other at a high level would represent the other extreme of
the spectrum. Hence, the balance here is rooted in the notion that when the
variability in one of the inputs (inter-arrival and service times) is high (low),
that in the other inputs should also be high (low) to obtain reliable estimates.
Although the intuition suggests this kind of behavior, the exact thresholds for
what is considered “high” and “low” and the precise expression for modifying
the squared coefficient of variation are determined empirically in this paper,
i.e., via computational experiments to determine which threshold and which
modification leads to the best results vis-á-vis the results from simulations.
This entails trial-and-error based experimentation with different combinations
of high and low values and benchmarking against simulation to determine
which combination delivers the best performance.

Performing computational experiments to identify a suitable replacement
for an existing term is common in queueing approximations, although this

is a tedious process. For instance, see Sakasegawa (1977), where W
D/M/1
q is

replaced by (W
M/D/1
q − µ

3 ) in which D denotes deterministic (constant); the
reason for this replacement is justified there on grounds of empirically satis-
factory results. Also, finding thresholds for determining fields of satisfactory
behavior is also common in queueing literature. For instance, the classical
heavy-traffic threshold, ρ > 0.8, above which heavy-traffic approximations
rooted in the normal distribution are known to work in a satisfactory manner,
has been determined via computational experiments (Whitt 1993).

From our extensive experimentation, the following thresholds and approx-
imate formulas are proposed herein:

– When the variability in the inter-arrival time is low, i.e., C2
a < 0.3: the

effect of the variability in the service time should be lower to maintain
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balance and hence the variance is reduced by the number of servers, k:

Ĉ2
s ≡ 1

k

σ2
s

(1/µ)2
.

– When the variability in the inter-arrival time is high, i.e., when C2
a >= 0.3:

the effect of the variability in the service time should be magnified, again
to maintain balance, and hence the variance is multiplied by the number
of servers, k:

Ĉ2
s ≡ k

σ2
s

(1/µ)2
.

The two formulas above will be combined as for convenience of representation:

Ĉ2
s =

{
1
k

σ2
s

(1/µ)2 , if C2
a < 0.3.

kσ2
s

(1/µ)2 , if C2
a >= 0.3.

(12)

Since we consider one server to replace a multi-server queueing system, it is
necessary to divide the arrival process into k equal parts, and therefore the
arrival rate to the aggregated queue will be λ/k; otherwise, one will have an
unstable system. The service rate of the aggregated single server will be µ.
Taken together, this implies that in the aggregated queue:

ρ =
λ

kµ
. (13)

The above is a necessary condition for consistency with the value of utilization
in any multi-server queue (Whitt 1993) which should be less than one for
stability.

3.2 Step 2

Step 2 will employ a G/G/1 approximation for the aggregated single-server
queue. Within the approximation, the squared coefficient of service will be used
as defined above by Equation (12) and ρ as defined above by Equation (13); the
value of C2

a will not be altered. A regime, defined herein as a well-defined area
on the graph of which the x-axis is C2

a and the y-axis is C2
s , is constructed for

estimating the value of L̂q, i.e., the estimated mean length of the aggregated
queue. The regime is described via four sub-areas or scenarios that have been
identified on the graph. See Fig. 5 for the geometric structure of this regime.
As stated above, extensive computational experimentation involving trial and
error was conducted that led us to conclude that if the K-L-B rule is used
within M-SAP for the hypothetical single-server queue, Equation (9) works
more accurately than Equation (8) for calculating g.

The approximation formula needed in each scenario within the regime is
presented below.
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Scenario 1: Conditions: C2
a < 0.30;C2

s ≤ 0.15: Use the MAR G/G/1 approxi-
mation given in Equation (2) to compute L̂q.

Scenario 2: Conditions: C2
a > 0.3;C2

s ≤ 0.15: Use MAR G/G/1 approximation
provided in Equation (2) to compute L̂q.

Scenario 3: Conditions: C2
a < 0.3; 0.15 < C2

s ≤ 1: Use the K-L-B G/G/1
approximation found in Equation (7) using the value of g computed via
Equation (9) to compute L̂q.

Scenario 4: Conditions: C2
a > 0.3; 0.15 < C2

s ≤ 1: Use the MAR G/G/1 ap-
proximation given via Equation (2) to compute L̂q.

Fig. 5 The number in each box represents the Scenario number

3.3 Step 3

In this retrieval step, the value of the mean queue length of the original queue
is obtained via the following equation that seeks to compress the elongated
hypothetical queue by k:

Lq =
L̂q
k
. (14)

The mean wait in the queue can now be computed via Little’s law, i.e., Equa-
tion (1). The intuition underlying the proposed approximation for the mean
queue length, i.e., Equation (14), is as follows: Since k servers are aggre-
gated, the resulting variability in the aggregated (fictitious) server is artificially
higher, which must be adjusted for in the final calculation. This adjustment is
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performed by dividing the queue length of the single-server, aggregated queue
obtained from the previous two steps by k.

4 Numerical Results

The numerical testing with M-SAP as well as that for the benchmarking tech-
niques was performed under the condition: C2

a < 1. This condition is standard
for most manufacturing, airport, and hospital systems; also when the variance
is so high that C2

a exceeds 1, higher-order moments are often needed (Buza-
cott and Shanthikumar 1993; Shore 1988; Marchal 1985), which is beyond the
scope of this work.

Computer programs for implementing M-SAP were run on a personal com-
puter in a university setting that used an Intel Pentium Processor with a speed
of 2.66 GHz on a 64-bit operating system. The simulation programs used the
software ARENA. The M-SAP, MAR, and K-L-B approximations were imple-
mented within the software MATLAB because it provided great flexibility in
programming; however, this task can just as easily be carried out in spread-
sheet software. The MATLAB program required no more than 5 seconds for
any given scenario, while the simulations with ARENA used 10 replications
each and needed about 55 seconds per scenario. In addition, every scenario
required benchmarking via the two G/G/k models based on MAR and K-L-
B; this also needed no more than 5 seconds per scenario. In all, for the four
scenarios, a total of 91 cases were tested.

Fig. 6 A screenshot of the simulation computer program written in ARENA: The main
window shows the panel where the main code is written, and the window below it shows the
panel in which the number of servers, i.e., the value of k, is assigned, which is 2 for Case 1
in Table 2.
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4.1 Numerical Evaluation with M-SAP

The approximation was tested under the following conditions: (i) gamma dis-
tribution for inter-arrival times, (ii) λ = 1/5, and (iii) ρ = λ/(kµ) was ap-
proximately 0.67 (medium traffic); the value for µ was varied as follows. For
k = 2, µ = 0.15; for k = 3, µ = 0.1; for k = 4, µ = 0.075; for k = 5, µ = 0.06;
for k = 6, µ = 0.05; for k = 7, µ = 0.043; and for k = 8, µ = 0.0375. The
different parameters for the inter-arrival times are shown in Table 1. Other
double-tapering distributions were not chosen for the inter-arrival time as no
evidence was found for them in the literature as suitable choices for the inter-
arrival time.

Fig. 6 shows a screenshot of the computer program written in ARENA.
Key details of this program are as follows: The main computer program is
comprised of three modules, CREATE, PROCESS, and DISPOSE. Customers
(entities) enter the system through the CREATE module, where the param-
eters of the inter-arrival time distribution are specified using the following
ARENA format: GAMM (scale, shape), where GAMM denotes the gamma
distribution. Within the PROCESS module, the parameters of the service time
are specified from one of the following three choices for the model studied here:
GAMM (scale, shape) for the gamma distribution and TRIA(minimum, mode,
maximum) for the triangular distribution. The DISPOSE module allows enti-
ties to leave the system. The capacity of the server is specified in the bottom
window and it equals k. The time for which the computer program is run and
the number of replications is set within the execution panel (not shown in the
figure).

Results from the computational work are provided in Tables 2 through 9. In
these tables, SERT is used to denote service times, and the following acronyms
are used for three distributions: Ga (scale, shape) for the gamma distribution
and T (minimum, mode, maximum) for the triangular distribution. The error
against simulation for the approximation was defined as follows, following the
literature (Rabta 2013):

Error(%) =

∣∣∣∣∣WApprox
q −WSim

q

WSim
q

∣∣∣∣∣× 100

where Approx represents M-SAP, MAR, or K-L-B and Sim denotes simula-
tion. M-SAP delivers good performance with the error in the range of 1%-15%
in most cases; occasionally the error exceeds 30%, but this is rare compared
to MAR and K-L-B. In fact, MAR and K-L-B deliver large errors frequently
with their errors, exceeding even 150% in many cases. What is important to
note is that the performance of M-SAP is consistently reliable, whereas it is
difficult to predict where MAR and/or K-L-B perform well. It should also be
reiterated here that errors are unavoidable with these approximations, as they
do not use distributions of the inter-arrival and service times (Whitt 1993;
Sakasegawa 1977). However, this approximation delivers reasonable results in
settings where distribution fitting is ruled out, as discussed in Section 1.
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There are cases where MAR or K-L-B perform well, but no pattern can
be found for that except for the following condition: 0.7 < C2

a ≤ 1. Under
this specific condition, K-L-B and MAR perform extremely well because as
C2
a approaches 1, the inter-arrival time distribution starts approximating the

exponential distribution; approximations rooted in the M/M/k formula used
by MAR and K-L-B are then naturally appropriate, leading to good perfor-
mance. While this specific condition is not common in the systems studied in
this paper, computational results are provided within the Appendix to demon-
strate the good performance of approximations from the literature under this
condition.

Table 1 Parameters in the inter-arrival time gamma distribution for the different values of
C2

a

C2
a Ga(scale, shape)

0.05 Ga (0.25, 20)
0.10 Ga (0.5, 10)
0.15 Ga (0.75, 6.67)
0.20 Ga (1, 5)
0.25 Ga (1.25, 4)
0.30 Ga (1.5, 3.333)
0.35 Ga (1.75, 2.8571)
0.40 Ga (2, 2.5)
0.45 Ga (2.25, 2.2)
0.50 Ga (2.5, 2)
0.55 Ga (2.75, 1.8182)
0.60 Ga (3, 1.67)
0.65 Ga (3.25, 1.5385)
0.70 Ga (3.5, 1.4286)
0.75 Ga (3.75, 1.33)
0.80 Ga (4, 1.25)
0.85 Ga (4.25, 1.1765)
0.90 Ga (4.5, 1.1111)
0.95 Ga (4.75, 1.0526)
1.0 Ga (5, 1)

Table 2 Results from Scenario 1 for k < 5: Entries under M-SAP, MAR, and K-L-B
columns denote errors in %

Case k C2
a SERT C2

s WSim
q M-SAP MAR K-L-B

1 2 0.10 T (1.6, 6, 12.4) 0.11 0.2122 0.06 95.68 29.70
2 2 0.15 T (1.6, 6, 12.4) 0.11 0.3203 6.55 73.61 16.41
3 2 0.20 T (1.6, 6, 12.4) 0.11 0.4362 11.71 59.79 6.50
4 2 0.25 T (1.6, 6, 12.4) 0.11 0.5632 16.36 48.78 0.17
5 2 0.10 Ga (1, 6.6667) 0.15 0.2901 20.287 65.22 21.93
6 2 0.15 Ga (1, 6.6667) 0.15 0.4057 21.65 53.54 11.64
7 2 0.10 Ga (1, 6.6667) 0.15 0.5259 23.05 45.81 3.51
8 2 0.10 Ga (0.8333, 8) 0.125 0.2579 14.63 71.42 29.92
9 2 0.15 Ga (0.8333, 8) 0.125 0.3601 14.91 62.28 15.14
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Table 3 Results for Scenario 1 for k ≥ 5: Entries under M-SAP, MAR, and K-L-B columns
denote errors in %

Case k C2
a SERT C2

s WSim
q M-SAP MAR K-L-B

1 5 0.05 T (4, 15, 31) 0.11 0.0380 5.42 341.93 1.41
2 5 0.10 T (4, 15, 31) 0.11 0.0777 4.97 227.59 17.69
3 5 0.15 T (4, 15, 31) 0.11 0.1263 14.77 169.86 29.90
4 6 0.20 Ga (1, 20) 0.05 0.0979 16.14 231.96 54.85
5 6 0.25 Ga (1, 20) 0.05 0.1497 5.40 165.97 52.72
6 6 0.30 Ga (1, 20) 0.05 0.2133 20.54 120.91 46.51
7 6 0.35 Ga (1, 20) 0.05 0.2638 25.18 106.35 51.81
8 7 0.15 Ga (2.3256, 10) 0.10 0.0636 16.35 293.01 81.65
9 8 0.15 Ga (4, 6.6667) 0.15 0.0586 7.85 289.76 123.00

Table 4 Results from Scenario 2 for k < 5: Entries under M-SAP, MAR, and K-L-B
columns denote errors in %

Case k C2
a SERT C2

s WSim
q M-SAP MAR K-L-B

1 2 0.35 Ga (4, 6.6667) 0.15 0.7235 27.72 37.99 15.89
2 2 0.40 Ga (4, 6.6667) 0.15 0.8672 16.57 28.93 13.30
3 2 0.45 Ga (4, 6.6667) 0.15 0.9831 13.44 25.91 14.65
4 2 0.50 Ga (4, 6.6667) 0.15 1.1203 8.08 21.18 13.41
5 2 0.55 Ga (4, 6.6667) 0.15 1.2752 2.44 15.85 10.77
6 2 0.4 T (1.6, 6, 12.4) 0.11 1.0204 6.645 24.31 5.33
7 2 0.5 T (1.6, 6, 12.4) 0.11 1.2914 14.26 19.94 9.878
8 3 0.4 T (2.4, 9, 18.6) 0.11 0.9923 16.02 30.07 19.16
9 3 0.60 T (2.4, 9, 18.6) 0.11 1.2923 25.54 17.63 12.69
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Table 5 Results for Scenario 2 for k > 5: Entries under M-SAP, MAR, and K-L-B columns
denote errors in %

Case k C2
a SERT C2

s WSim
q M-SAP MAR K-L-B

1 6 0.4 Ga (2, 10) 0.1 0.4132 13.16 61.21 35.45
2 6 0.4 Ga (1, 20) 0.05 0.3295 3.13 87.38 48.9
3 7 0.4 Ga (1.86, 12.5) 0.08 0.3125 21.73 77.60 45.84
4 7 0.4 Ga (1.63, 14.29) 0.07 0.2960 21.07 87.67 52.63
5 7 0.45 T (5.6, 21, 43.4) 0.11 0.4224 15.61 55.57 37.48
6 7 0.50 T (5.6, 21, 43.4) 0.11 0.4969 4.54 45.52 33.06
7 7 0.55 T (5.6, 21, 43.4) 0.11 0.5720 3.73 37.96 29.50
8 7 0.60 T (5.6, 21, 43.4) 0.11 0.6793 14.34 25.90 20.61
9 7 0.65 T (5.6, 21, 43.4) 0.11 0.7631 19.65 20.72 17.46

Table 6 Results from Scenario 3 for k < 5: Entries under M-SAP, MAR, and K-L-B
columns denote errors in %

Case k C2
a SERT C2

s WSim
q M-SAP MAR K-L-B

1 3 0.10 Ga (2, 5) 0.20 0.2878 10.22 60.76 5.82
2 3 0.15 Ga (2, 5) 0.20 0.3741 13.29 56.37 4.49
3 3 0.20 Ga (2, 5) 0.20 0.4726 18.15 49.71 10.35
4 3 0.25 Ga (2, 5) 0.20 0.5723 22.00 45.01 15.19
5 3 0.1 T (4, 6, 20) 0.13 0.1901 28.94 95.00 19.41
6 3 0.15 T (4, 6, 20) 0.13 0.2708 29.15 80.58 4.90
7 3 0.05 T (2, 18, 20) 0.13 0.1000 21.83 151.99 28.44
8 4 0.10 T (2, 18, 20) 0.09 0.0804 15.42 45.31 7.96
9 4 0.15 T (2, 18, 20) 0.09 0.143 5.61 163.49 16.42

Table 7 Results for Scenario 3 for k ≥ 5: Entries under M-SAP, MAR, and K-L-B columns
denote errors in %

Case k C2
a SERT C2

s WSim
q M-SAP MAR K-L-B

1 6 0.05 Ga (4, 5) 0.20 0.0766 12.29 184.39 39.52
2 6 0.10 Ga (4, 5) 0.20 0.1169 11.51 153.65 48.65
3 6 0.15 Ga (4, 5) 0.20 0.1698 19.19 120.75 47.48
4 6 0.20 Ga (4, 5) 0.20 0.2212 23.50 104.96 51.06
5 6 0.25 Ga (4, 5) 0.20 0.2830 29.42 87.91 49.28
6 8 0.05 T (6, 12, 62) 0.22 0.0431 5.45 67.68 93.84
7 8 0.10 T (6, 12, 62) 0.22 0.0650 10.89 62.5 131.80
8 8 0.15 T (6, 12, 62) 0.22 0.0968 1.64 68.1 84.7
9 8 0.20 T (6, 12, 62) 0.22 0.1403 13.57 161.26 100.01
10 8 0.25 T (6, 12, 62) 0.22 0.1837 2.76 205.03 149.12

4.2 Optimization Results with M-SAP

Finally, optimization was performed to illustrate how the M-SAP model is
useful for optimizing server capacity. The goal here is to determine the mini-



18

Table 8 Results from Scenario 4 for k < 5: Entries under M-SAP, MAR, and K-L-B
columns denote errors in %

Case k C2
a SERT C2

s WSim
q M-SAP MAR K-L-B

1 3 0.30 Ga (2, 5) 0.20 0.7097 29.03 34.20 12.94
2 3 0.35 Ga (2, 5) 0.20 0.8143 6.29 31.98 16.18
3 3 0.40 Ga (2, 5) 0.20 0.9456 1.05 26.61 15.44
4 3 0.45 Ga (2, 5) 0.20 1.0877 7.53 21.32 13.71
5 3 0.50 Ga (2, 5) 0.20 1.2331 12.74 16.96 12.00
6 3 0.55 Ga (2, 5) 0.20 1.3490 15.03 15.98 12.91
7 3 0.60 Ga (2, 5) 0.20 1.4591 16.63 15.63 13.98
8 3 0.65 Ga (2, 5) 0.20 1.6832 23.57 7.50 6.96
9 3 0.35 Ga (2.5, 4) 0.25 0.9029 10.37 27.68 16.78
10 3 0.40 Ga (2.5, 4) 0.25 1.0420 2.63 22.63 15.25
11 3 0.60 T (2.25, 4.5, 23.25) 0.22 1.4900 14.18 15.84 14.83
12 3 0.65 T (2.25, 4.5, 23.25) 0.22 1.5900 15.09 16.73 16.29
13 4 0.60 T (3, 6, 31) 0.22 1.0525 6.49 38.42 39.04
14 4 0.65 T (3, 6, 31) 0.22 1.2183 3.37 29.16 29.27

Table 9 Results for Scenario 4 for k ≥ 5: Entries under M-SAP, MAR, and K-L-B columns
denote errors in %

Case k C2
a SERT C2

s WSim
q M-SAP MAR K-L-B

1 5 0.45 T (3.75, 7.5, 38.75) 0.22 0.7411 19.75 24.43 27.38
2 5 0.50 T (3.75, 7.5, 38.75) 0.22 0.7610 22.80 42.85 37.99
3 5 0.55 T (3.75, 7.5, 38.75) 0.22 0.8914 10.18 32.34 29.54
4 5 0.60 T (3.75, 7.5, 38.75) 0.22 0.9660 6.49 31.34 30.18
5 5 0.65 T (3.75, 7.5, 38.75) 0.22 1.1763 8.34 15.58 15.48
6 6 0.45 Ga (4, 5) 0.20 0.7274 7.75 44.02 34.97
7 6 0.50 Ga (4, 5) 0.20 0.7663 7.49 30.10 24.58
8 6 0.55 Ga (4, 5) 0.20 0.7821 10.40 28.17 24.77
9 6 0.60 Ga (4, 5) 0.20 0.8913 1.36 21.27 19.56
10 6 0.65 Ga (4, 5) 0.20 1.0130 6.89 14.45 13.86
11 7 0.60 T (5.25, 10.5, 54.25) 0.22 0.6934 31.84 36.87 35.63
12 7 0.65 T (5.25, 10.5, 54.25) 0.22 0.7515 26.38 35.33 35.20

mum server capacity at which the mean waiting time is lower than a pre-set
upper threshold. Mathematically, this implies:

Minimize k such that Wq < T where T is a pre-set threshold.

The optimal value of k obtained from the optimization exercise is denoted
by k∗, while the minimum server capacity needed to obtain a stable system
is denoted by k̂. Note that k̂ can be obtained for any queue by finding the
minimum integer at which λ

kµ < 1. It should also be mentioned that at a server

capacity of k̂, the mean wait times are expected to be very long, although finite.

Two cases from the COVID-19 pandemic were used for optimization using
available data. The first case is representative of an urban area where the
arrival rate is likely to be higher, while the second one is representative of a
rural area where the arrival rate is likely to be lower.
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Urban Area Hospital from NHS Data: Data from the National Health Service
(NHS), UK, from the peak of the pandemic in 2020 were gathered from the
website (Data 2020), where NHS has made data available. The raw data are
provided in the Appendix for the reader’s convenience. This data led to the
following estimates for the length of stay: 13.1972 days with a variance of
4.5456 days-squared. This implies µ = 1/(13.1972) and C2

s = 0.1186. The
variance in the inter-arrival time is not provided at the NHS website, but will
clearly vary from place to place and hence was estimated from other sources. It
must be noted, however, that the model used (M-SAP) is general and should
be applicable for any given dataset, provided one has access to the mean and
variance of the inter-arrival and service times. The inter-arrival time in an
urban area was assumed to be 1 per week, i.e., λ = 1/7 per day with a gamma
distribution whose C2

a = 0.15, from existing data (Raffensperger et al. 2020).
The optimization was performed via performance evaluation at each value of
k using T = 0.025 day or 36 minutes. Since the M-SAP approach carries out
performance evaluation in a very short time period on a computer (requiring
no more than 5 seconds), no optimization algorithm was used, but rather the

performance was evaluated at all feasible values of k. For this case, k̂ = 93 and
k∗ = 118. Fig. 7 plots the mean waiting time versus the number of ventilators
(k) for these data. When k = k̂ = 93, i.e., k satisfies the stability condition,
the mean wait is 1.296 days, which exceeds the threshold, T .

Fig. 7 Plot of mean waiting time (unit of time is day) versus number of ventilators for an
urban hospital.

Rural Area Hospital from United States: The inter-arrival time in an urban
area from the United States was assumed to be 1 per week, i.e., λ = 1/7
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per day with a gamma distribution whose C2
a = 0.15. The service time was

assumed to have a gamma distribution with a mean of 9.1 days, i.e., µ = 1/9.1
per day, and C2

s = 1/2; both the inter-arrival time and service times in this
case were based on data from Raffensperger et al. (2020). T was set to 0.025

day as in the urban area case. The stability value of ventilator capacity, k̂, here
is 2 while the optimal value, k∗ equals 5. The resulting plot of the mean wait
against ventilator capacity is shown in Fig. 8. At the stability condition, i.e.,
k = k̂ = 2, the mean waiting time is 1.1165 days, which exceeds the reasonable
threshold of 36 minutes, as in the urban case.

Fig. 8 Plot of mean waiting time (unit of time is day) versus number of ventilators for a
rural hospital.

5 Conclusions

A motivating factor for this research was the need to develop closed-form
multi-server queueing approximations under the following conditions: (a) traf-
fic intensity is medium, (b) the inter-arrival time is not exponentially dis-
tributed but carries a double-tapering distribution, and (c) the service time
also has a double-tapering distribution. In particular, in many real-world set-
tings, e.g., airports, hospitals, and manufacturing systems, all three conditions
apply, which rule out the usage of the fairly accurate, existing M/G/k mod-
els or the heavy traffic approximation for G/G/k queues. The non-Poisson
arrivals and non-Poisson service rates make these systems difficult to approx-
imate in closed form (Gupta et al. 2010). In the context of a hospital, it must
be noted, inaccuracies often lead to under-designed systems with lengthened
waits, and waiting beyond acceptable thresholds can cause the patient’s death.
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In airports and factories also, poorly designed systems can cause long, harm-
ful delays. While discrete-event simulation does provide a reliable mechanism
to solve problems of this nature, it requires (a) expensive software and (b)
distribution fitting. Further, simulations of G/G/k systems can become unac-
ceptably sluggish for large values of k. Therefore, in the real-world, closed-form
approximations based on only the mean and variance that are usable within
spreadsheet software continue to remain of practical importance.

The novelty of this work lies in developing a new scheme to aggregate a
single-channel, multi-server queue into a fictitious single-channel, single-server
queue with the same utilization. The scheme allows one to exploit existing,
accurate G/G/1 approximations to develop formulas for mean waiting times,
rather than the M/M/k formula used extensively in the literature. A conclu-
sion from this study is that for medium-traffic, multi-server queues in man-
ufacturing and service systems, where the inter-arrival time density function
and the service time density function are double tapering, M-SAP performs
well consistently in comparison to the existing MAR and K-L-B approaches
from the literature. The research also leads to new insights about the per-
formance of MAR and K-L-B in systems where the performance gradually
improves as the inter-arrival time’s distribution starts approaching the expo-
nential distribution. Future research in this topic should be directed toward
using higher-order moments to address the condition k ≥ 10 and developing
approximations for variance of the waiting times in G/G/k queues.
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APPENDIX

Queueing Notation Glossary: We provide a glossary of terms commonly used
in queueing theory for the convenience of the reader:

– Generally Distributed Random Variable: This is a random variable that
can have any given distribution.

– C2: Squared coefficient of variation of a random variable: This the variance
of a random variable divided by the square of its mean.

– Double-Tapering Distribution: This is a continuous random variable who
probability density function tapers on both sides to zero.

– M/M/k Queue: This is a queue with infinite waiting capacity in which
there are k servers in parallel, and both inter-arrival and service times
have the exponential distribution. M denotes Markovian, which means ex-
ponential distribution here, and the first and second letters in this notation
denote the distributions of the inter-arrival and service times, respectively.
The mean length of this queue can be computed using the well-known,
exact formula given via Equations (3) and (4).

– M/G/k Queue: This a queue with infinite waiting capacity in which there
are k servers, the inter-arrival time has the exponential distribution, and
the service time has any given distribution. The latter is also often de-
scribed as the service time being generally distributed.

– G/G/k Queue: This a queue with infinite waiting capacity in which there
are k servers, and both the inter-arrival and service times have any given
distribution.

– Poisson Arrival and Service Processes: A Poisson arrival process to a system
implies that the inter-arrival time is exponentially distributed. Similarly,
a Poisson service process implies that the service time is exponentially
distributed.

– ρ: This is the traffic intensity of the queue (which equals the proportion
of time the servers are busy). This is a positive number and it has to be
less than 1 for a queue to be stable. In general, only stable queues can be
analyzed for steady-state (long-term) behavior. The condition 0 < ρ < 0.5
is defined as low traffic, 0.5 < ρ ≤ 0.8 as medium traffic, and 0.8 < ρ < 1
as high traffic.

– Queuing Discipline: This is the order in which customers are served. First
come first served implies that within a pool of customers waiting in line, the
customer who enters first is served first. Other queuing disciplines include
last in first out and shortest time first etc.

– Correction Factor: This is a scalar quantity often used in queueing ap-
proximations to multiply the performance metric of a class of queues (e.g.,
M/M/k) to obtain the corresponding metric for another class of queues
(M/G/k).

Compact Representation of Approximation: The approximation pro-
posed in this paper can be presented in the following user-friendly format for
programming as follows: If C2

a >= 0.7, use MAR or K-L-B. Otherwise:
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– First compute Ĉ2
s via Equation (12) and ρ via Equation (13).

– Then, compute the mean length in the G/G/k queue as:

Lq =


ρ2(C2

a+Ĉ
2
s )

2k(1−ρ) exp
(

(1−ρ)(1−C2
a)

C2
a+4Ĉ2

s

)
if C2

a < 0.3 and 0.15 < C2
s ≤ 1

ρ2(1+Ĉ2
s )(C

2
a+ρ

2Ĉ2
s )

2k(1−ρ)(1+ρ2Ĉ2
s )

otherwise

Table 10 Scenario 2 when C2
a > 0.7: Entries under MAR and K-L-B columns denote errors

in %

Case k C2
a SERT C2

s WSim
q MAR K-L-B

1 5 0.90 T (4, 15, 31) 0.11 1.6689 2.03 1.8
2 5 0.95 T (4, 15, 31) 0.11 1.8533 7.12 6.95
3 5 1.00 T (4, 15, 31) 0.11 1.9310 6.39 6.35
4 6 0.75 T (4.8, 18, 37.2) 0.11 1.2314 2.58 3.33
5 6 0.80 T (4.8, 18, 37.2) 0.11 1.3244 3.74 3.95
6 6 0.85 T (4.8, 18, 37.2) 0.11 1.4304 5.62 5.52
7 6 0.90 T (4.8, 18, 37.2) 0.11 1.5065 5.39 5.17
8 6 0.95 T (4.8, 18, 37.2) 0.11 1.5953 5.94 5.77
9 6 1.00 T (4.8, 18, 37.2) 0.11 1.7946 12.20 12.20
10 9 0.75 Ga (3.0303, 10) 0.10 0.8444 2.9 3.74
11 9 0.80 Ga (3.0303, 10) 0.10 0.8558 1.83 1.53
12 9 0.85 Ga (3.0303, 10) 0.10 0.9666 4.5 4.45
13 9 0.90 Ga (3.0303, 10) 0.10 1.0481 7.00 6.82
14 9 0.95 Ga (3.0303, 10) 0.10 1.1746 12.63 12.47
15 9 1.00 Ga (3.0303, 10) 0.10 1.2403 13.09 13.09
16 9 0.75 Ga (4.5455, 6.667) 0.15 0.8398 2.74 2.61
17 9 0.80 Ga (4.5455, 6.667) 0.15 0.9137 0.21 0.46
18 9 0.85 Ga (4.5455, 6.667) 0.15 1.0522 7.97 7.57
19 9 0.90 Ga (4.5455, 6.667) 0.15 1.0935 6.61 6.21
20 9 0.95 Ga (4.5455, 6.667) 0.15 1.2343 12.98 12.73
21 9 1.00 Ga (4.5455, 6.667) 0.15 1.2689 11.19 11.19



On General Multi-Server Queues with Non-Poisson Arrivals 27

Table 11 Inputs for Scenario 4 when C2
a > 0.7: Entries under MAR and K-L-B columns

denote errors in %

Case k C2
a SERT C2

s WSim
q MAR K-L-B

1 5 0.80 T (3.75, 7.5, 38.75) 0.22 1.6383 0.98 0.13
2 5 0.85 T (3.75, 7.5, 38.75) 0.22 1.7878 4.19 3.38
3 5 0.90 T (3.75, 7.5, 38.75) 0.22 1.9530 7.66 7.03
4 5 0.95 T (3.75, 7.5, 38.75) 0.22 2.1008 9.85 9.49
5 5 1.00 T (3.75, 7.5, 38.75) 0.22 2.1481 7.61 7.61
6 7 0.80 T (5.25, 10.5, 54.25) 0.22 1.2467 0.39 0.46
7 7 0.85 T (5.25, 10.5, 54.25) 0.22 1.3959 6.07 5.28
8 7 0.90 T (5.25, 10.5, 54.25) 0.22 1.4735 6.32 5.28
9 7 0.95 T (5.25, 10.5, 54.25) 0.22 1.5865 8.62 8.25
10 7 1.00 T (5.25, 10.5, 54.25) 0.22 1.6418 7.47 7.47
11 5 0.8 Ga (2.5, 6.67) 0.15 1.5601 2.17 1.92
12 5 0.9 Ga (2.5, 6.67) 0.15 1.4700 9.81 9.81
13 5 0.9 Ga (2.5, 6.67) 0.15 1.89 9.93 9.54
14 7 0.95 Ga (4.6512, 5) 0.20 1.5110 7.33 6.99
15 7 1 Ga (5.814, 4) 0.25 1.67 8.51 8.51

Table 12 Data for length of stay (service time) from March to September, 2020 (Data
2020)

Length of Stay Frequency
(days)

6 10,594
9 3,964
11 55,896
17 23,588
19 1,961
21 9,783
23 3,905


